Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples

For two families of beta distributions, we show that the generalized Stieltjes transforms of their elements may be written as elementary functions (powers and fractions) of the Stieltjes transform of the Wigner distribution. In particular, we retrieve the examples given by the author in a previous p...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Author: Demni, N.
Format: Article
Language:English
Published: Інститут математики НАН України 2016
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/147733
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples / N. Demni // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147733
record_format dspace
spelling irk-123456789-1477332019-02-16T01:25:13Z Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples Demni, N. For two families of beta distributions, we show that the generalized Stieltjes transforms of their elements may be written as elementary functions (powers and fractions) of the Stieltjes transform of the Wigner distribution. In particular, we retrieve the examples given by the author in a previous paper and relating generalized Stieltjes transforms of special beta distributions to powers of (ordinary) Stieltjes ones. We also provide further examples of similar relations which are motivated by the representation theory of symmetric groups. Remarkably, the power of the Stieltjes transform of the symmetric Bernoulli distribution is a generalized Stietljes transform of a probability distribution if and only if the power is greater than one. As to the free Poisson distribution, it corresponds to the product of two independent Beta distributions in [0,1] while another example of Beta distributions in [−1,1] is found and is related with the Shrinkage process. We close the exposition by considering the generalized Stieltjes transform of a linear functional related with Humbert polynomials and generalizing the symmetric Beta distribution. 2016 Article Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples / N. Demni // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 28 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C05; 33C20; 33C45; 44A15; 44A20 DOI:10.3842/SIGMA.2016.035 http://dspace.nbuv.gov.ua/handle/123456789/147733 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For two families of beta distributions, we show that the generalized Stieltjes transforms of their elements may be written as elementary functions (powers and fractions) of the Stieltjes transform of the Wigner distribution. In particular, we retrieve the examples given by the author in a previous paper and relating generalized Stieltjes transforms of special beta distributions to powers of (ordinary) Stieltjes ones. We also provide further examples of similar relations which are motivated by the representation theory of symmetric groups. Remarkably, the power of the Stieltjes transform of the symmetric Bernoulli distribution is a generalized Stietljes transform of a probability distribution if and only if the power is greater than one. As to the free Poisson distribution, it corresponds to the product of two independent Beta distributions in [0,1] while another example of Beta distributions in [−1,1] is found and is related with the Shrinkage process. We close the exposition by considering the generalized Stieltjes transform of a linear functional related with Humbert polynomials and generalizing the symmetric Beta distribution.
format Article
author Demni, N.
spellingShingle Demni, N.
Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Demni, N.
author_sort Demni, N.
title Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples
title_short Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples
title_full Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples
title_fullStr Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples
title_full_unstemmed Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples
title_sort generalized stieltjes transforms of compactly-supported probability distributions: further examples
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147733
citation_txt Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples / N. Demni // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 28 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT demnin generalizedstieltjestransformsofcompactlysupportedprobabilitydistributionsfurtherexamples
first_indexed 2025-07-11T02:44:05Z
last_indexed 2025-07-11T02:44:05Z
_version_ 1837316842288316416
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 12 (2016), 035, 13 pages Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions: Further Examples? Nizar DEMNI IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France E-mail: nizar.demni@univ-rennes1.fr URL: https://perso.univ-rennes1.fr/nizar.demni Received December 12, 2015, in final form April 06, 2016; Published online April 12, 2016 http://dx.doi.org/10.3842/SIGMA.2016.035 Abstract. For two families of beta distributions, we show that the generalized Stieltjes transforms of their elements may be written as elementary functions (powers and fractions) of the Stieltjes transform of the Wigner distribution. In particular, we retrieve the examples given by the author in a previous paper and relating generalized Stieltjes transforms of special beta distributions to powers of (ordinary) Stieltjes ones. We also provide further examples of similar relations which are motivated by the representation theory of symmetric groups. Remarkably, the power of the Stieltjes transform of the symmetric Bernoulli distribution is a generalized Stietljes transform of a probability distribution if and only if the power is greater than one. As to the free Poisson distribution, it corresponds to the product of two independent Beta distributions in [0, 1] while another example of Beta distributions in [−1, 1] is found and is related with the Shrinkage process. We close the exposition by considering the generalized Stieltjes transform of a linear functional related with Humbert polynomials and generalizing the symmetric Beta distribution. Key words: generalized Stieltjes transform; Beta distributions; Gauss hypergeometric func- tion; Humbert polynomials 2010 Mathematics Subject Classification: 33C05; 33C20; 33C45; 44A15; 44A20 1 Reminder Let λ be a positive real number and µ be a probability measure supported in the real line (possibly depending on λ). Its generalized Stieltjes transform is defined by Gλ,µ(z) := ∫ 1 (z − x)λ µ(dx) for complex numbers z lying outside the support of µ and such that (z − x)λ is the principal branch of the power function. In particular, G1,µ is the (ordinary) Stieltjes transform of µ which we simply denote hereafter by Gµ. The latter has deep connections with the theory of continued fractions, combinatorics, Padé approximations and free probability theory (see [13, 20] and references therein). As to Gλ,µ, much less is known. For instance, this transform was introduced in [28] for measures µ supported in the positive half-line and an inversion formula was derived. For the same type of measures, the notion of exact order is defined in [14] and [15] and determined for hypergeometric series. When λ is a positive integer, the random weighted average of independent random variables gives rise to generalized Stieltjes transforms of continuous probability measures which may be written as products of Stieltjes transforms [23, 24, 27]). In ?This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applica- tions. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html mailto:nizar.demni@univ-rennes1.fr https://perso.univ-rennes1.fr/nizar.demni http://dx.doi.org/10.3842/SIGMA.2016.035 http://www.emis.de/journals/SIGMA/OPSFA2015.html 2 N. Demni the recent paper [18], generalized Stieltjes transforms appear as transmutation operators between the solutions of the hypergeometric differential equation. Motivated by a generalization of free probability theory and relying on the characterization of ultraspherical-type generating series for orthogonal polynomials [1, 7], we provided in [6] four examples of compactly-supported probability measures µ = µλ for which there exist probability measures ν = νλ satisfying Gλ,µ(z) = [G1,ν(z)]λ = [Gν(z)]λ. (1.1) Actually, the Wigner distribution plays a central role in (Voiculescu) free probability theory and is an instance of the symmetric beta distribution. Since any symmetric probability distribution with finite moments of all orders arises as the weak limit of sums of self-adjoint variables in a suitable algebra [4], it is then natural to seek a λ-deformation of free probability theory where the symmetric beta distribution appears in the central limit theorem. At the analytic side, when relations like (1.1) hold, they bridge between the free additive convolution and its λ-deformation provided that the measure ν is independent of λ. As shown in [6], this last property is satisfied by the couple of symmetric beta and Wigner distributions and this is the only example derived there with this property. This elementary observation raises the following questions: • Given λ > 0 and µ = µλ, what are the necessary and/or sufficient conditions ensuring (1.1) to hold with ν being independent of λ? • Conversely, given λ > 0 and ν independent of λ, when does the power [Gν ]λ is a generalized Stieltjes transform of a probability distribution µ = µλ? • Is the symmetric beta distribution the only element in the family of beta distributions satisfying (1.1) with ν being independent of λ? • In the same vein, find other or all examples of beta distributions satisfying (1.1) with this property? Most likely, it is much easier to look for partial or definitive answers to the two last questions rather than the remaining ones. In general, if we want to derive an expression of Gλ,µ for given λ and µ, it suffices to expand (z, x) 7→ 1 (z − x)λ , in a absolutely convergent series of orthogonal polynomials with respect to µ since then Gλ,µ is nothing else but the first term of this series. Recently, this task was achieved in [5] for the family of Jacobi polynomials whence the generalized Stieltjes transform of any beta distribution in [−1, 1] follows after a simple integration. Using linear and quadratic transformations of the Gauss hypergeometric function, we retrieve the few examples of (1.1) given in [6] and prove for two larger classes of beta distributions that their generalized Stieltjes transforms are ele- mentary functions (powers and fractions) of the Stieltjes transform of the Wigner distribution. We also provide a new example of beta distributions satisfying (1.1), where ν does not depend on λ as well thereby giving a negative answer to the third question. Actually, the probability distribution ν describes the large time behavior of the Shrinkage process and is the transition measure of triangular diagrams [16]. Two other examples of probability measures ν occurring in representation theory of symmetric groups are considered. In the former, ν is the symmetric Bernoulli distribution which is the transition measure of a square Young diagram [2] and (1.1) holds if and only if λ ≥ 1. The latter shows that the λ-power of the Stieltjes transform of the free Poisson distribution (which arises in the decomposition of the tensor product repre- sentation of the symmetric group [3]) is the generalized Stieltjes transform of a product of two independent beta distributions supported in [0, 1]. Indeed, the multiplicative convolution with Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions 3 a beta distribution of special parameters provides a transformation preserving probability dis- tributions satisfying (1.1) for any λ > 0. In the last part of the paper, we investigate a possible generalization of the relation (1.1) holding between the symmetric beta and the Wigner distri- butions. More precisely, we consider the generating series of Humbert polynomials which are d-orthogonal with respect to d ≥ 1 linear functionals and integrate it with respect to the first functional. Doing so leads to the problem of finding a suitable root of a trinomial equation of degree d+ 1 which is known to be expressed by means of the Gauss hypergeometric function. 2 Special functions In this paragraph, we recall the definitions and some properties of special functions occurring in the remainder of the paper. We refer the reader to [10, 13, 21, 25]. Let Γ denote the gamma function and recall the Legendre duplication formula: √ πΓ(2z) = 22z−1Γ(z)Γ ( z + 1 2 ) . For a complex number z and a positive integer k ≥ 1, the Pochhammer symbol is defined by (z)k = z(z + 1) · · · (z + k − 1) with the convention (z)0 = 1. When z is not a negative integer, we can write (z)k = Γ(z + k) Γ(z) , while (−n)k = (−1)kn! (n− k)! for any positive integer n ≥ k and vanishes otherwise. Next, the hypergeometric series pFq is defined by pFq(a1, . . . , ap, b1, . . . , bq; z) = ∑ n≥0 (a1)n · · · (ap)n (b1)n · · · (bq)n zn n! when the series converges. In particular, the Gauss hypergeometric series 2F1 converges in the open unit disc {|z| < 1} and has an analytic extension to the complex plane cut along the half line [1,∞). This function will play a major role in our computations and we use further the following linear and quadratic transformations valid for | arg(1− u)| < π: 2F1(a, c+ d, c;u) = 1 (1− u)a 2F1 ( a,−d, c; u u− 1 ) , (2.1) 2F1(a, b, 2a;u) = 1 (1− (u/2))b 2F1 ( b 2 , b+ 1 2 , a+ 1 2 ; u2 (2− u)2 ) , (2.2) 2F1 ( a, a+ 1 2 , b;u ) = 22a (1 + √ 1− u)2a 2F1 ( 2a, 2a− b+ 1, b; u (1 + √ 1− u)2 ) . (2.3) In particular, (2.3) yields the closed formulas 2F1 ( a− 1 2 , a, 2a;u ) = 22a−1 (1 + √ 1− u)2a−1 , (2.4) and 2F1 ( a, a+ 1 2 , 2a;u ) = 1√ 1− u 22a−1 (1 + √ 1− u)2a−1 . (2.5) 4 N. Demni We shall also make use of the Euler integral representation of the 2F1: for <(c) > <(b) > 0 and |z| < 1, 2F1(a, b, c; z) = Γ(c) Γ(c− b)Γ(b) ∫ 1 0 (1− uz)−aub−1(1− u)c−b−1du. (2.6) As to hypergeometric polynomials, we denote by P (γ,β) n , C (α) n the n-th Jacobi and ultraspherical respectively: P (γ,β) n (x) = (γ + 1)n n! 2F1 ( −n, n+ γ + β + 1, γ + 1; 1− x 2 ) , γ, β > −1, C(α) n (x) = (2α)n (α+ 1/2)n P (α−1/2,α−1/2) n (x), α > −1/2, α 6= 0. 3 Generalized Stieltjes transform of beta distributions The starting point of our investigations is the following expansion proved in [5, Theorem 1]: for any z ∈ C\(−∞, 1] on any given ellipse with foci at ±1 and any x in the interior of this ellipse, 1 (z − x)λ = ∞∑ n=0 Γ(γ + β + n+ 1)(λ)n Γ(2n+ γ + β + 1) 2n (z − 1)n+λ × 2F1 ( n+ λ, n+ γ + 1, 2n+ 2 + γ + β, 2 1− z ) P (γ,β) n (x). For fixed z, this series converges uniformly in x ∈ [−1, 1] (see, e.g., [26, Chapter IX, Theo- rem 9.1.1]) and as shown in [5], it is valid for a set of parameters λ, γ, β containing R∗+×(−1,∞)2. However, we shall restrict ourselves to the latter which is sufficient for our purposes and subse- quent computations. As a matter of fact, the orthogonality of Jacobi polynomials with respect to the beta distribution µγ,β(dx) := Γ(γ + β + 2) 2γ+β+1Γ(γ + 1)Γ(β + 1) (1− x)γ(1 + x)β1[−1,1](x)dx readily gives1 Gλ,µγ,β (z) = 1 (z − 1)λ 2F1 ( λ, γ + 1, γ + β + 2, 2 1− z ) . (3.1) Note that the r.h.s. of (3.1) is not symmetric in (γ, β) unless γ = β. Nonetheless, we can use (2.1) to transform (3.1) into Gλ,µγ,β (z) = 1 (z + 1)λ 2F1 ( λ, β + 1, γ + β + 2, 2 1 + z ) . (3.2) Here, one performs the transformation for z lying in a suitable region in the complex plane (in order to use the principal determinations of (z+1)λ, (z−1)λ, [(z+1)/(z−1)]λ) and then extends the obtained equality analytically to C\(−∞, 1]. With (3.1) and (3.2) in hands, we start our investigations of generalized Stieltjes transforms of two families of beta distributions. 1We could also use the Euler integral representation of the 2F1 hypergeometric function. Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions 5 3.1 Symmetric beta distributions Take γ = β = λ− (1/2), λ > 0 in (3.1). Then (2.4) entails 1 (z − 1)λ 2F1 ( λ, λ+ 1 2 , 2λ+ 1, 2 1− z ) = [ 2 z + √ z2 − 1 ]λ . In the right-hand side of the last expression, we recognize the Stieltjes transform of the Wigner distribution GW(z) = ∫ 1 −1 1 z − x 2 √ 1− x2 π dx = 2 z + √ z2 − 1 , z > 1. As a result, Γ(λ+ 1)√ πΓ(λ+ 1/2) ∫ 1 −1 (1− x2)λ−1/2 (z − x)λ dx = [GW(z)]λ, (3.3) which is the first example given in [6]. In order to retrieve the second example given in [6], specialize (3.1) to γ = β = λ− (3/2), λ > 1 and use (2.5) to derive 1 (z − 1)λ 2F1 ( λ− 1 2 , λ, 2λ− 1, 2 1− z ) = 1√ z2 − 1 [GW(z)]λ−1. But the Stieltjes transform of the arcsine distribution reads GAS(z) = ∫ 1 −1 1 z − x dx π √ 1− x2 = 1√ z2 − 1 . Consequently, for any λ > 1, Γ(λ)√ πΓ(λ− 1/2) ∫ 1 −1 (1− x2)λ−3/2 (z − x)λ dx = GAS(z)[GW(z)]λ−1. (3.4) These two examples are indeed instances of the following more general formula: Proposition 3.1. If λ = γ + 1/2 + k ≥ 0 for some integer k ≥ 0, then the generalized Stieltjes transform of µγ,γ(dx) = Γ(γ + 3/2)√ πΓ(γ + 1) ( 1− x2 )γ 1[−1,1](x)dx may be written by means of powers and fractions of the variable GW: Gλ,µγ,γ (z) = 4k[GW(z)]λ [4− [GW(z)]2]k 2F1 ( k, 1− k, γ + 3 2 ; [GW(z)]2 [GW(z)]2 − 4 ) . Proof. Specialize (3.1) to γ = β and use (2.2) to get 1 (z − 1)λ 2F1 ( λ, γ + 1, 2γ + 2, 2 1− z ) = 1 zλ 2F1 ( λ 2 , λ+ 1 2 , γ + 3 2 , 1 z2 ) . Assuming γ + (1/2) ≤ λ and using (2.3) transforms the r.h.s. of the last equality to 1 zλ 2F1 ( λ 2 , λ+ 1 2 , γ + 3 2 , 1 z2 ) = [GW(z)]λ 2F1 ( λ, λ− γ − 1 2 , γ + 3 2 ; [GW(z)]2 4 ) . 6 N. Demni Assuming further that λ = γ + 1/2 + k for some integer k ≥ 0 and noting that 1− [GW(z)]2 4 = 2 √ z2 − 1 z + √ z2 − 1 ∈ [0, 1), z > 1, then we can appeal to the linear transformation (2.1) and end up with 2F1 ( k, λ, γ + 3 2 ; [GW(z)]2 4 ) = 4k [4− [GW(z)]2]k 2F1 ( k, 1− k, γ + 3 2 ; [GW(z)]2 [GW(z)]2 − 4 ) . � Remark 3.2. Note that 1− [GW(z)]2 4 = √ z2 − 1GW(z) = GW(z) GAS(z) so that Gλ,µλ−(1/2)−k,λ−(1/2)−k(z) = [GW(z)]λ−1[GAS(z)]k 2F1 ( k, 1− k, γ + 3 2 ; GAS(z)GW(z) 4 ) . In the next paragraph, we derive a similar formula for a family of nonsymmetric beta distri- butions. 3.2 Nonsymmetric beta distributions In [6], two other examples of probability distributions satisfying (1.1) were derived. They cor- respond to nonsymmetric beta distributions with parameters (γ, β) = ( λ− 1 2 , λ− 3 2 ) , (γ, β) = ( λ− 3 2 , λ− 1 2 ) (3.5) and readily follow from (3.1) together with the identities (2.4) and (2.5). As with the previous family of symmetric beta distributions, we can derive a more general formula for generalized Stieltjes transforms of nonsymmetric ones with parameters γ = λ− 1/2 and β = λ− k − 1/2 = γ − k, k ≥ 1: Proposition 3.3. For any z > 1, Gλ,µλ−(1/2),λ−(1/2)−k(z) = [GW(z)]λ−(k/2) (1 + z)k/2 2F1 ( 1− k, k, 2λ− k + 1; GW(z) GW(z) + 2 ) . The equality extends analytically to the complex plane cut along (−∞, 1]. Proof. Using (2.3) and (2.1), we get Gλ,µλ−(1/2),λ−(1/2)−k(z) = 1 (z − 1)λ 2F1 ( λ, λ+ 1 2 , λ+ β + 3 2 , 2 1− z ) = [GW(z)]λ 2F1 ( 2λ, λ− β − 1 2 , λ+ β + 3 2 ;−GW(z) 2 ) = 2k[GW(z)]λ [2 +GW(z)]k 2F1 ( 1− k, k, 2λ− k + 1; GW(z) GW(z) + 2 ) . From the relation 1 + [GW(z)]2 4 = zGW(z), it follows that( 1 + GW(z) 2 )2 = (z + 1)GW(z) and the proposition follows. � Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions 7 Remark 3.4. Interchanging the roles of γ and β with the help of (3.2), similar computations yield Gλ,µλ−(1/2)−k,λ−(1/2) (z) = 2k[GW(z)]λ [2−GW(z)]k 2F1 ( 1− k, k, 2λ− k + 1; GW(z) GW(z)− 2 ) = [GW(z)]λ−(k/2) (z − 1)k/2 2F1 ( 1− k, k, 2λ− k + 1; GW(z) GW(z)− 2 ) . 4 Generalized Stieltjes transforms as powers of Stieltjes transforms: further examples So far, we dispose of four couples (µ, ν) of probability distributions satisfying (1.1): those displayed in (3.3) and (3.4) and those corresponding to the two couples of parameters specified in (3.5). However, only (3.3) has the property that ν (the Wigner distribution in this case) does not depend on λ. In this section, we derive three more examples enjoying this property which, like the Wigner distribution, appeared as transition distributions of Young or continuous diagrams (see [16] for more details). 4.1 The square diagram The symmetric Bernoulli distribution ν = 1 2 [δ−L + δL], L ∈ N\{0}, is the basic example of transition distribution of a Young diagram. Indeed, it corresponds to the square diagram of width L [2]. To simplify, take L = 1 so that Gν(z) = z z2 − 1 . Then we shall prove Proposition 4.1. If ν is the symmetric Bernoulli distribution, then Gλ,µ(z) = [Gν(z)]λ for every λ ≥ 1, where µ(dx) = µλ(dx) = 1 2λ [ [δ1 + δ−1](dx) + 1√ |x| h( √ |x|)dx ] and h(x) = hλ(x) := λ(λ− 1) 4 xλ−1 2F1 ( λ 2 + 1, λ+ 1 2 ; 2; 1− x ) 1[0,1](x). Proof. Let λ > 0 and assume (1.1) holds for some probability measure µ = µλ, namely,∫ 1 (1− wx)λ µ(dx) = 1 (1− w2)λ = ∑ k≥0 (λ)k k! w2k, w = 1/z ∈ (0, 1). Hence, µ is symmetric and its even moments are given by∫ x2kµ(dx) = (2k)!(λ)k k!(λ)2k . 8 N. Demni Using Legendre duplication formula, these moments may be written as Γ(k + λ)Γ(k + 1/2) 2λ−1Γ(k + (λ/2))Γ(k + (λ+ 1)/2) = (λ)k(1/2)k (λ/2)k((λ+ 1)/2)k . According to [9, Theorem 6.2], there exists a probability distribution χ = χλ supported in (0, 1) such that∫ 1 0 xkχ(dx) = (λ)k(1/2)k (λ/2)k((λ+ 1)/2)k if and only if λ ≥ 1. This is an instance of the so-called G-distributions [8, 9] and its Lebesgue decomposition is given by χ(dx) = Γ((λ+ 1)/2)Γ(λ/2) Γ(1/2)Γ(λ) × [ δ1(dx) + λ(λ− 1) 4 xλ−1 2F1 ( λ 2 + 1, λ+ 1 2 ; 2; 1− x ) 1[0,1](x)dx ] = 1 2λ−1 [ δ1(dx) + λ(λ− 1) 4 xλ−1 2F1 ( λ 2 + 1, λ+ 1 2 ; 2; 1− x ) 1[0,1](x)dx ] . Noting ξ is the push forward of µ under the square map x 7→ x2, we are done. � Remark 4.2. Some parts of Theorems 1 and 2 in [8] as well as Theorem 6.2 in [9] appear also in [14]. 4.2 The Shrinkage process While the Wigner distribution is the limiting transition distribution of Young diagrams drawn from the Plancherel measure, the arcsine distribution describes in this case the limiting shape of these diagrams (it is referred to as the Rayleigh measure [17]). In turn, the latter is the transition distribution whose Rayleigh measure is the symmetric Bernoulli distribution and belongs to a more general family of distributions related with triangular diagrams and with the Shrinkage process [16]. The analogue of example (3.4) is derived as follows. Consider (3.1) with λ = γ + β + 2: 1 (z − 1)λ 2F1 ( λ, γ + 1, λ, 2 1− z ) = 1 (z − 1)λ ( 1− z −z − 1 )γ+1 = 1 (z − 1)λ−γ−1 1 (z + 1)γ+1 for z > 1. Write γ + 1 = λp for some 0 < p < 1, then ∫ 1 (z − x)λ µpλ−1,(1−p)λ−1(dx) = [ 1 (z − 1)1−p(z + 1)p ]λ = [∫ 1 z − x µp−1,−p(dx) ]λ . In particular, if p = 1/2 then Γ(λ) 2λ−1[Γ(λ/2)]2 ∫ 1 −1 1 (z − x)λ ( 1− x2 )(λ/2)−1 dx = [∫ 1 −1 1 z − x dx π √ 1− x2 ]λ . Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions 9 4.3 The free Poisson distribution Let µ be a (non necessarily symmetric) probability distribution supported in [−1, 1] and de- note κλ the probability distribution with beta density Γ(λ) [Γ(λ/2)]2 [x(1− x)](λ/2)−11[0,1](x). Denote κλ ? µ the multiplicative convolution of κλ and µ, that is, the probability distribution of the product of two independent random variables with probability distributions κλ and µ. By definition,∫ f(x) (κλ ? µ) (dx) = ∫∫ f(uv)κλ(du)µ(dv) for any bounded measurable function f . Then, for |z| > 1, the integral representation (2.6) yields∫ 1 (z − x)λ κλ ? µ(dx) = Γ(λ) [Γ(λ/2)]2zλ ∫ (∫ 1 0 1 (1− (v/z)u)λ [u(1− u)](λ/2)−1du ) µ(dv) = 1 zλ ∫ 2F1 ( λ, λ 2 , λ; v z ) µ(dv) = 1 zλ/2 ∫ 1 (z − v)λ/2 µ(dv). In particular, if µ = µλ satisfies (1.1) with the exponent λ/2∫ 1 (z − x)λ/2 µλ/2(dx) = [Gν(z)]λ/2 for some probability measure ν independent of λ, then∫ 1 (z − x)λ κλ ? µ(dx) = [ [Gν(z)]1/2 z1/2 ]λ at least for z > 1. Since = ( [Gν(z)]1/2/z1/2 ) < 0 for =(z) > 0, then the last equality extends analytically to the upper half-plane. Moreover, lim y→∞ (iy) [Gν(iy)]1/2 (iy)1/2 = 1 so that z 7→ [Gν(z)]1/2/z1/2 is a Nevannlina–Pick function and may be represented as the Stieltjes transform of a probability measure (see for instance [22, Lemma 2.2]). This elementary observation allows to derive further examples of probability distributions (µ, ν) satisfying (1.1). For instance, Proposition 4.3. For any λ > 0 and z in the upper half-plane,∫ 1 (z − x)λ κλ ? κλ+1(dx) = 2λ [z + √ z(z − 1)]λ . Proof. Let µ = κλ+1, then for z in a suitable region in the upper half-plane,∫ 1 (z − x)λ κλ ? κλ+1(dx) = Γ(λ+ 1) [Γ(λ+ 1/2)]2 1 zλ/2 ∫ 1 (z − x)λ/2 [x(1− x)](λ+1)/2−1dx = 1 zλ 2F1 ( λ 2 , λ+ 1 2 , λ+ 1; 1 z ) = 2λ [ √ z( √ z + √ z − 1)]λ = 2λ [z + √ z(z − 1)]λ , 10 N. Demni where the third equality follows from (2.4). But, the map z 7→ 2 z + √ z(z − 1) = 2 z − √ (z − (1/2))2 − (1/4) z is the Stieltjes transform of the free Poisson distribution with parameters (1, 1/4) (see for instance [20, p. 204]) whose density reads 2 π √ 1− x x 1[0,1](x). Therefore, the proposition follows by analytic continuation. � Remark 4.4. The free Poisson distribution appears the limiting transition measure of random diagrams arising from the decomposition of tensor product representations of the symmetric group [3]. On the other hand, the density of κλ ? κλ+1 is given by [8] Γ(λ)Γ(λ+ 1) Γ(λ/2)Γ((λ+ 1)/2)Γ(λ+ (1/2)) x(λ/2)−1(1− x)λ−1/2 × 2F1 ( λ− 1 2 , λ+ 1 2 , λ+ 1 2 , 1− x ) 1[0,1](x). 5 Further developments The Humbert polynomials ( H (α,d) n ) n≥0 of parameters α > −1/2, α 6= 0, d ∈ N\{0} and degrees n ∈ N, are defined by their generating series:∑ n≥0 H(α,d) n zn = 1 (1− (d+ 1)xz + zd+1)α , and reduce to ultraspherical polynomials ( C (α) n ) n when d = 1. They cease to be orthogonal as soon as d ≥ 2 and are rather d-orthogonal in the following sense (see, e.g., [19]): there exist d linear functionals Γ (α,d) 0 , . . . ,Γ (α,d) d−1 on the space of polynomials such that Γk ( H(α,d) n H(α,d) r ) = 0, r > dn+ k, Γk ( H(α,d) n H (α,d) nd+k ) 6= 0, for all n ∈ N, 0 ≤ k ≤ d− 1. In particular, Γ (α,d) 0 ( H (α,d) 0 H (α,d) r ) = 0 for any r > 0 so that∫ 1 (1− (d+ 1)xz + zd+1)α Γ0(dx) = 1. Hence, we can find a suitable region outside the compact support of Γ (α,d) 0 for which∫ 1 (fα(z)− x)α Γ0(dx) = [(d+ 1)z]α, where fα(z) := 1 + zd+1 (d+ 1)z . Now, the trinomial equation fα(z) = y has (d + 1) roots which may be expressed through the Gauss hypergeometric function [11, 12] and we seek the one which tends to zero when y tends to infinity in the upper half-plane. For instance, when d = 2 then the polynomial equation z3 − 3yz + 1 = 0, =(y) > 0, Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions 11 may be transformed by setting z = √ −yw into w3 + 3w + 1 (−y)3/2 = 0. From [12, p. 265] the sought root is given by z = − (−y)1/2 3(−y)3/2 2F1 ( 1 3 , 2 3 , 3 2 ;− 1 4((−y)3/2)2 ) = 1 3y 2F1 ( 1 3 , 2 3 , 3 2 ; 1 4y3 ) , where the last equality is valid for y lying in some sector in the upper half-plane. Using the Euler integral representation 2F1 ( 1 3 , 2 3 , 3 2 ; 1 4y3 ) = 41/3Γ(3/2) Γ(2/3)Γ(5/6) ∫ 1 0 y (y3 − x)1/3 x−1/3(1− x)−1/6dx, we get the following equality∫ 1 (y − x)α Γ (α,2) 0 (dx) = { 41/3Γ(3/2) Γ(2/3)Γ(5/6) ∫ 1 0 1 (y3 − x)1/3 x−1/3(1− x)−1/6dx }α . More generally, the solution to the equation zd+1 + (d+ 1)z + 1 (−y)(d+1)/d = 0, =(y) > 0, tending to zero as y →∞ may be derived along the same lines written in [12, p. 266], and may be expressed through the hypergeometric series dFd−1 ( i d+ 1 , 1 ≤ i ≤ d, i+ 1 d , 1 ≤ i ≤ d, i 6= d− 1; (−1)d ddyd+1 ) . Thus, the reasoning above applies and leads to the generalized Stieltjes transform of Γ (α,d) 0 as a α-power of this hypergeometric series. Remark 5.1. An anonymous referee pointed out to the author that the functional Γ (α,d) 0 co- incides up to the variable change x 7→ ddxd+1 with the representative measure of the hyper- geom̄etric function d+1Fd as a generalized Stieltjes transform [15, Theorem 2]. Actually, Γ (α,d) 0 is expressed in terms of the Meijer G-function [19, Theorem 2.4] 1 x Gd+1,0 d+1,d+1 ( ddxd+1 ∣∣∣(α+ 1)/d, . . . , (α+ d)/d, 1 1/(d+ 1), . . . , d/(d+ 1), 1 ) which reduces to 1 x Gd,0d,d ( ddxd+1 ∣∣∣(α+ 1)/d, . . . , (α+ d)/d 1/(d+ 1), . . . , d/(d+ 1) ) , while Theorem 2 in [15] entails d+1Fd ( α, a1, . . . , ad, b1, . . . , bd, 1 y ) = d∏ i=1 Γ(bi) Γ(ai) ∫ 1 0 yα (y − x)α Gd,0d,d ( x ∣∣∣b1, . . . , bd a1, . . . , ad ) dx x . for y ∈ C\(−∞, 1]. 12 N. Demni Acknowledgements The author would like to thank H. Cohl and C. Dunkl for their helpful remarks on earlier versions of the paper. He also greatly appreciates the suggestions of the anonymous referees which considerably improved the presentation. References [1] Al-Salam W.A., Verma A., Some sets of orthogonal polynomials, Rev. Técn. Fac. Ingr. Univ. Zulia 9 (1986), 83–88. [2] Biane P., Representations of symmetric groups and free probability, Adv. Math. 138 (1998), 126–181. [3] Biane P., Approximate factorization and concentration for characters of symmetric groups, Int. Math. Res. Not. 2001 (2001), no. 4, 179–192, math.RT/0006111. [4] Cabanal-Duvillard D., Ionescu V., Un théorème central limite pour des variables aléatoires non-commuta- tives, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 1117–1120. [5] Cohl H.S., Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the poly- harmonic equation and polyspherical addition theorems, SIGMA 9 (2013), 042, 26 pages, arXiv:1209.6047. [6] Demni N., Generalized Cauchy–Stieltjes transforms of some beta distributions, Commun. Stoch. Anal. 3 (2009), 197–210, arXiv:0902.0054. [7] Demni N., Ultraspherical type generating functions for orthogonal polynomials, Probab. Math. Statist. 29 (2009), 281–296, arXiv:0812.3666. [8] Dufresne D., The beta product distribution with complex parameters, Comm. Statist. Theory Methods 39 (2010), 837–854. [9] Dufresne D., G distributions and the beta-gamma algebra, Electron. J. Probab. 15 (2010), no. 71, 2163–2199. [10] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, Vol. I, Bateman Manuscript Project, McGraw-Hill Book Co., New York, 1953. [11] Glasser M.L., Hypergeometric functions and the trinomial equation. Higher transcendental functions and their applications, J. Comput. Appl. Math. 118 (2000), 169–173. [12] Hille E., Analytic function theory, Vol. 1, Introduction to Higher Mathematics, Ginn and Company, Boston, 1959. [13] Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge, 2005. [14] Karp D., Prilepkina E., Generalized Stieltjes functions and their exact order, J. Class. Anal. 1 (2012), 53–74. [15] Karp D., Prilepkina E., Hypergeometric functions as generalized Stieltjes transforms, J. Math. Anal. Appl. 393 (2012), 348–359, arXiv:1112.5769. [16] Kerov S.V., Transition probabilities of continual Young diagrams and the Markov moment problem, Funct. Anal. Appl. 27 (1993), 104–117. [17] Kerov S.V., Interlacing measures, in Kirillov’s Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2, Vol. 181, Amer. Math. Soc., Providence, RI, 1998, 35–83. [18] Koornwinder T.H., Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators, SIGMA 11 (2015), 074, 22 pages, arXiv:1504.08144. [19] Lamiri I., Ouni A., d-orthogonality of Humbert and Jacobi type polynomials, J. Math. Anal. Appl. 341 (2008), 24–51. [20] Nica A., Speicher R., Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, Vol. 335, Cambridge University Press, Cambridge, 2006. [21] Rainville E.D., Special functions, The Macmillan Co., New York, 1960. [22] Shohat J.A., Tamarkin J.D., The problem of moments, American Mathematical Society Mathematical Sur- veys, Vol. 1, American Mathematical Society, New York, 1943. [23] Soltani A.R., Homei H., Weighted averages with random proportions that are jointly uniformly distributed over the unit simplex, Statist. Probab. Lett. 79 (2009), 1215–1218. http://dx.doi.org/10.1006/aima.1998.1745 http://dx.doi.org/10.1155/S1073792801000113 http://dx.doi.org/10.1155/S1073792801000113 http://arxiv.org/abs/math.RT/0006111 http://dx.doi.org/10.1016/S0764-4442(97)88716-2 http://dx.doi.org/10.3842/SIGMA.2013.042 http://arxiv.org/abs/1209.6047 http://arxiv.org/abs/0902.0054 http://arxiv.org/abs/0812.3666 http://dx.doi.org/10.1080/03610920902802599 http://dx.doi.org/10.1214/EJP.v15-845 http://dx.doi.org/10.1016/S0377-0427(00)00287-9 http://dx.doi.org/10.1017/CBO9781107325982 http://dx.doi.org/10.1017/CBO9781107325982 http://dx.doi.org/10.1016/j.jmaa.2012.03.044 http://arxiv.org/abs/1112.5769 http://dx.doi.org/10.1007/BF01085981 http://dx.doi.org/10.1007/BF01085981 http://dx.doi.org/10.3842/SIGMA.2015.074 http://arxiv.org/abs/1504.08144 http://dx.doi.org/10.1016/j.jmaa.2007.09.047 http://dx.doi.org/10.1017/CBO9780511735127 http://dx.doi.org/10.1017/CBO9780511735127 http://dx.doi.org/10.1016/j.spl.2009.01.009 Generalized Stieltjes Transforms of Compactly-Supported Probability Distributions 13 [24] Soltani A.R., Roozegar R., On distribution of randomly ordered uniform incremental weighted averages: divided difference approach, Statist. Probab. Lett. 82 (2012), 1012–1020. [25] Srivastava H.M., Manocha H.L., A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, Halsted Press, New York, 1984. [26] Szegő G., Orthogonal polynomials, Colloquium Publications, Vol. 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975. [27] Van Assche W., A random variable uniformly distributed between two independent random variables, Sankhyā Ser. A 49 (1987), 207–211. [28] Widder D.V., The Stieltjes transform, Trans. Amer. Math. Soc. 43 (1938), 7–60. http://dx.doi.org/10.1016/j.spl.2012.02.007 http://dx.doi.org/10.2307/1989901 1 Reminder 2 Special functions 3 Generalized Stieltjes transform of beta distributions 3.1 Symmetric beta distributions 3.2 Nonsymmetric beta distributions 4 Generalized Stieltjes transforms as powers of Stieltjes transforms: further examples 4.1 The square diagram 4.2 The Shrinkage process 4.3 The free Poisson distribution 5 Further developments References