The Co-Points of Rays are Cut Points of Upper Level Sets for Busemann Functions
We show that the co-rays to a ray in a complete non-compact Finsler manifold contain geodesic segments to upper level sets of Busemann functions. Moreover, we characterise the co-point set to a ray as the cut locus of such level sets. The structure theorem of the co-point set on a surface, namely th...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | Sabau, S.V. |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147734 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The Co-Points of Rays are Cut Points of Upper Level Sets for Busemann Functions / S.V. Sabau // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineСхожі ресурси
-
Points of upper and lower semicontinuity of multivalued functions
за авторством: A. K. Mirmostafaee
Опубліковано: (2017) -
Geometric Constructions in the Class of Busemann Nonpositively Curved Spaces
за авторством: Andreev, P.D.
Опубліковано: (2009) -
Some fixed point theorems for pseudo ordered sets
за авторством: Parameshwara Bhatta, S., та інші
Опубліковано: (2011) -
Extremal problem for open sets in case the point at infinity
за авторством: A. L. Targonskij, та інші
Опубліковано: (2015) -
An unsupervised, iterative N-dimensional point-set registration algorithm
за авторством: P. Hosseinbor, та інші
Опубліковано: (2022)