The Transition Probability of the q-TAZRP (q-Bosons) with Inhomogeneous Jump Rates

In this paper we consider the q-deformed totally asymmetric zero range process (q-TAZRP), also known as the q-boson (stochastic) particle system, on the Z lattice, such that the jump rate of a particle depends on the site where it is on the lattice. We derive the transition probability for an n part...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Wang, D., Waugh, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147736
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Transition Probability of the q-TAZRP (q-Bosons) with Inhomogeneous Jump Rates / D. Wang, D. Waugh // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147736
record_format dspace
spelling irk-123456789-1477362019-02-16T01:24:56Z The Transition Probability of the q-TAZRP (q-Bosons) with Inhomogeneous Jump Rates Wang, D. Waugh, D. In this paper we consider the q-deformed totally asymmetric zero range process (q-TAZRP), also known as the q-boson (stochastic) particle system, on the Z lattice, such that the jump rate of a particle depends on the site where it is on the lattice. We derive the transition probability for an n particle process in Bethe ansatz form as a sum of n! n-fold contour integrals. Our result generalizes the transition probability formula by Korhonen and Lee for q-TAZRP with a homogeneous lattice, and our method follows the same approach as theirs. 2016 Article The Transition Probability of the q-TAZRP (q-Bosons) with Inhomogeneous Jump Rates / D. Wang, D. Waugh // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 19 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 82B23; 82C22; 60J35 DOI:10.3842/SIGMA.2016.037 http://dspace.nbuv.gov.ua/handle/123456789/147736 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we consider the q-deformed totally asymmetric zero range process (q-TAZRP), also known as the q-boson (stochastic) particle system, on the Z lattice, such that the jump rate of a particle depends on the site where it is on the lattice. We derive the transition probability for an n particle process in Bethe ansatz form as a sum of n! n-fold contour integrals. Our result generalizes the transition probability formula by Korhonen and Lee for q-TAZRP with a homogeneous lattice, and our method follows the same approach as theirs.
format Article
author Wang, D.
Waugh, D.
spellingShingle Wang, D.
Waugh, D.
The Transition Probability of the q-TAZRP (q-Bosons) with Inhomogeneous Jump Rates
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Wang, D.
Waugh, D.
author_sort Wang, D.
title The Transition Probability of the q-TAZRP (q-Bosons) with Inhomogeneous Jump Rates
title_short The Transition Probability of the q-TAZRP (q-Bosons) with Inhomogeneous Jump Rates
title_full The Transition Probability of the q-TAZRP (q-Bosons) with Inhomogeneous Jump Rates
title_fullStr The Transition Probability of the q-TAZRP (q-Bosons) with Inhomogeneous Jump Rates
title_full_unstemmed The Transition Probability of the q-TAZRP (q-Bosons) with Inhomogeneous Jump Rates
title_sort transition probability of the q-tazrp (q-bosons) with inhomogeneous jump rates
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147736
citation_txt The Transition Probability of the q-TAZRP (q-Bosons) with Inhomogeneous Jump Rates / D. Wang, D. Waugh // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 19 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT wangd thetransitionprobabilityoftheqtazrpqbosonswithinhomogeneousjumprates
AT waughd thetransitionprobabilityoftheqtazrpqbosonswithinhomogeneousjumprates
AT wangd transitionprobabilityoftheqtazrpqbosonswithinhomogeneousjumprates
AT waughd transitionprobabilityoftheqtazrpqbosonswithinhomogeneousjumprates
first_indexed 2023-05-20T17:28:10Z
last_indexed 2023-05-20T17:28:10Z
_version_ 1796153364167262208