Bôcher Contractions of Conformally Superintegrable Laplace Equations

The explicit solvability of quantum superintegrable systems is due to symmetry, but the symmetry is often ''hidden''. The symmetry generators of 2nd order superintegrable systems in 2 dimensions close under commutation to define quadratic algebras, a generalization of Lie algebra...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Kalnins, E.G., Miller Jr., Willard, Subag, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147737
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Bôcher Contractions of Conformally Superintegrable Laplace Equations / E.G. Kalnins, Willard Miller Jr., E. Subag // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147737
record_format dspace
spelling irk-123456789-1477372019-02-17T01:24:39Z Bôcher Contractions of Conformally Superintegrable Laplace Equations Kalnins, E.G. Miller Jr., Willard Subag, E. The explicit solvability of quantum superintegrable systems is due to symmetry, but the symmetry is often ''hidden''. The symmetry generators of 2nd order superintegrable systems in 2 dimensions close under commutation to define quadratic algebras, a generalization of Lie algebras. Distinct systems on constant curvature spaces are related by geometric limits, induced by generalized Inönü-Wigner Lie algebra contractions of the symmetry algebras of the underlying spaces. These have physical/geometric implications, such as the Askey scheme for hypergeometric orthogonal polynomials. However, the limits have no satisfactory Lie algebra contraction interpretations for underlying spaces with 1- or 0-dimensional Lie algebras. We show that these systems can be best understood by transforming them to Laplace conformally superintegrable systems, with flat space conformal symmetry group SO(4,C), and using ideas introduced in the 1894 thesis of Bôcher to study separable solutions of the wave equation in terms of roots of quadratic forms. We show that Bôcher's prescription for coalescing roots of these forms induces contractions of the conformal algebra so(4,C) to itself and yields a mechanism for classifying all Helmholtz superintegrable systems and their limits. In the paper [Acta Polytechnica, to appear, arXiv:1510.09067], we announced our main findings. This paper provides the proofs and more details. 2016 Article Bôcher Contractions of Conformally Superintegrable Laplace Equations / E.G. Kalnins, Willard Miller Jr., E. Subag // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R05; 81R12; 33C45 DOI:10.3842/SIGMA.2016.038 http://dspace.nbuv.gov.ua/handle/123456789/147737 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The explicit solvability of quantum superintegrable systems is due to symmetry, but the symmetry is often ''hidden''. The symmetry generators of 2nd order superintegrable systems in 2 dimensions close under commutation to define quadratic algebras, a generalization of Lie algebras. Distinct systems on constant curvature spaces are related by geometric limits, induced by generalized Inönü-Wigner Lie algebra contractions of the symmetry algebras of the underlying spaces. These have physical/geometric implications, such as the Askey scheme for hypergeometric orthogonal polynomials. However, the limits have no satisfactory Lie algebra contraction interpretations for underlying spaces with 1- or 0-dimensional Lie algebras. We show that these systems can be best understood by transforming them to Laplace conformally superintegrable systems, with flat space conformal symmetry group SO(4,C), and using ideas introduced in the 1894 thesis of Bôcher to study separable solutions of the wave equation in terms of roots of quadratic forms. We show that Bôcher's prescription for coalescing roots of these forms induces contractions of the conformal algebra so(4,C) to itself and yields a mechanism for classifying all Helmholtz superintegrable systems and their limits. In the paper [Acta Polytechnica, to appear, arXiv:1510.09067], we announced our main findings. This paper provides the proofs and more details.
format Article
author Kalnins, E.G.
Miller Jr., Willard
Subag, E.
spellingShingle Kalnins, E.G.
Miller Jr., Willard
Subag, E.
Bôcher Contractions of Conformally Superintegrable Laplace Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kalnins, E.G.
Miller Jr., Willard
Subag, E.
author_sort Kalnins, E.G.
title Bôcher Contractions of Conformally Superintegrable Laplace Equations
title_short Bôcher Contractions of Conformally Superintegrable Laplace Equations
title_full Bôcher Contractions of Conformally Superintegrable Laplace Equations
title_fullStr Bôcher Contractions of Conformally Superintegrable Laplace Equations
title_full_unstemmed Bôcher Contractions of Conformally Superintegrable Laplace Equations
title_sort bôcher contractions of conformally superintegrable laplace equations
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147737
citation_txt Bôcher Contractions of Conformally Superintegrable Laplace Equations / E.G. Kalnins, Willard Miller Jr., E. Subag // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kalninseg bochercontractionsofconformallysuperintegrablelaplaceequations
AT millerjrwillard bochercontractionsofconformallysuperintegrablelaplaceequations
AT subage bochercontractionsofconformallysuperintegrablelaplaceequations
first_indexed 2023-05-20T17:28:11Z
last_indexed 2023-05-20T17:28:11Z
_version_ 1796153364273168384