Nonstandard Deformed Oscillators from q- and p,q-Deformations of Heisenberg Algebra

For the two-parameter p,q-deformed Heisenberg algebra introduced recently and in which, instead of usual commutator of X and P in the l.h.s. of basic relation [X,P]=iℏ, one uses the p,q-commutator, we established interesting properties. Most important is the realizability of the p,q-deformed Heisenb...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Gavrilik, A.M., Kachurik, I.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147738
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Nonstandard Deformed Oscillators from q- and p,q-Deformations of Heisenberg Algebra / A.M. Gavrilik, I.I. Kachurik // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:For the two-parameter p,q-deformed Heisenberg algebra introduced recently and in which, instead of usual commutator of X and P in the l.h.s. of basic relation [X,P]=iℏ, one uses the p,q-commutator, we established interesting properties. Most important is the realizability of the p,q-deformed Heisenberg algebra by means of the appropriate deformed oscillator algebra. Another uncovered property is special extension of the usual mutual Hermitian conjugation of the creation and annihilation operators, namely the so-called η(N)-pseudo-Hermitian conjugation rule, along with the related η(N)-pseudo-Hermiticity property of the position or momentum operators. In this work, we present some new solutions of the realization problem yielding new (nonstandard) deformed oscillators, and show their inequivalence to the earlier known solution and the respective deformed oscillator algebra, in particular what concerns ground state energy.