Are Orthogonal Separable Coordinates Really Classified?
We prove that the set of orthogonal separable coordinates on an arbitrary (pseudo-)Riemannian manifold carries a natural structure of a projective variety, equipped with an action of the isometry group. This leads us to propose a new, algebraic geometric approach to the classification of orthogonal...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147741 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Are Orthogonal Separable Coordinates Really Classified? / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We prove that the set of orthogonal separable coordinates on an arbitrary (pseudo-)Riemannian manifold carries a natural structure of a projective variety, equipped with an action of the isometry group. This leads us to propose a new, algebraic geometric approach to the classification of orthogonal separable coordinates by studying the structure of this variety. We give an example where this approach reveals unexpected structure in the well known classification and pose a number of problems arising naturally in this context. |
---|