Are Orthogonal Separable Coordinates Really Classified?

We prove that the set of orthogonal separable coordinates on an arbitrary (pseudo-)Riemannian manifold carries a natural structure of a projective variety, equipped with an action of the isometry group. This leads us to propose a new, algebraic geometric approach to the classification of orthogonal...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Schöbel, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147741
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Are Orthogonal Separable Coordinates Really Classified? / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147741
record_format dspace
spelling irk-123456789-1477412019-02-16T01:24:56Z Are Orthogonal Separable Coordinates Really Classified? Schöbel, K. We prove that the set of orthogonal separable coordinates on an arbitrary (pseudo-)Riemannian manifold carries a natural structure of a projective variety, equipped with an action of the isometry group. This leads us to propose a new, algebraic geometric approach to the classification of orthogonal separable coordinates by studying the structure of this variety. We give an example where this approach reveals unexpected structure in the well known classification and pose a number of problems arising naturally in this context. 2016 Article Are Orthogonal Separable Coordinates Really Classified? / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14H70; 53A60; 58D27 DOI:10.3842/SIGMA.2016.041 http://dspace.nbuv.gov.ua/handle/123456789/147741 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We prove that the set of orthogonal separable coordinates on an arbitrary (pseudo-)Riemannian manifold carries a natural structure of a projective variety, equipped with an action of the isometry group. This leads us to propose a new, algebraic geometric approach to the classification of orthogonal separable coordinates by studying the structure of this variety. We give an example where this approach reveals unexpected structure in the well known classification and pose a number of problems arising naturally in this context.
format Article
author Schöbel, K.
spellingShingle Schöbel, K.
Are Orthogonal Separable Coordinates Really Classified?
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Schöbel, K.
author_sort Schöbel, K.
title Are Orthogonal Separable Coordinates Really Classified?
title_short Are Orthogonal Separable Coordinates Really Classified?
title_full Are Orthogonal Separable Coordinates Really Classified?
title_fullStr Are Orthogonal Separable Coordinates Really Classified?
title_full_unstemmed Are Orthogonal Separable Coordinates Really Classified?
title_sort are orthogonal separable coordinates really classified?
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147741
citation_txt Are Orthogonal Separable Coordinates Really Classified? / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT schobelk areorthogonalseparablecoordinatesreallyclassified
first_indexed 2023-05-20T17:28:11Z
last_indexed 2023-05-20T17:28:11Z
_version_ 1796153364695744512