Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases

We introduce the notion of ''hypergeometric'' polynomials with respect to Newtonian bases. We find the necessary and sufficient conditions for the polynomials Pn(x) to be orthogonal. For the special cases where the sets λn correspond to the classical grids, we find the complete s...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Vinet, L., Zhedanov, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147742
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases / L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147742
record_format dspace
spelling irk-123456789-1477422019-02-16T01:25:20Z Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases Vinet, L. Zhedanov, A. We introduce the notion of ''hypergeometric'' polynomials with respect to Newtonian bases. We find the necessary and sufficient conditions for the polynomials Pn(x) to be orthogonal. For the special cases where the sets λn correspond to the classical grids, we find the complete solution to these conditions and observe that it leads to the most general Askey-Wilson polynomials and their special and degenerate classes. 2016 Article Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases / L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42C05; 42C15 DOI:10.3842/SIGMA.2016.048 http://dspace.nbuv.gov.ua/handle/123456789/147742 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We introduce the notion of ''hypergeometric'' polynomials with respect to Newtonian bases. We find the necessary and sufficient conditions for the polynomials Pn(x) to be orthogonal. For the special cases where the sets λn correspond to the classical grids, we find the complete solution to these conditions and observe that it leads to the most general Askey-Wilson polynomials and their special and degenerate classes.
format Article
author Vinet, L.
Zhedanov, A.
spellingShingle Vinet, L.
Zhedanov, A.
Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Vinet, L.
Zhedanov, A.
author_sort Vinet, L.
title Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases
title_short Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases
title_full Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases
title_fullStr Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases
title_full_unstemmed Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases
title_sort hypergeometric orthogonal polynomials with respect to newtonian bases
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147742
citation_txt Hypergeometric Orthogonal Polynomials with respect to Newtonian Bases / L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT vinetl hypergeometricorthogonalpolynomialswithrespecttonewtonianbases
AT zhedanova hypergeometricorthogonalpolynomialswithrespecttonewtonianbases
first_indexed 2023-05-20T17:28:11Z
last_indexed 2023-05-20T17:28:11Z
_version_ 1796153364801650688