Zeros of Quasi-Orthogonal Jacobi Polynomials
We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α>−1, −2<β<−1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P(α,β)n and P(α,β+2)n are interla...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147743 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Zeros of Quasi-Orthogonal Jacobi Polynomials / K. Driver, K. Jordaan // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We consider interlacing properties satisfied by the zeros of Jacobi polynomials in quasi-orthogonal sequences characterised by α>−1, −2<β<−1. We give necessary and sufficient conditions under which a conjecture by Askey, that the zeros of Jacobi polynomials P(α,β)n and P(α,β+2)n are interlacing, holds when the parameters α and β are in the range α>−1 and −2<β<−1. We prove that the zeros of P(α,β)n and P(α,β)n₊₁ do not interlace for any n∈N, n≥2 and any fixed α, β with α>−1, −2<β<−1. The interlacing of zeros of P(α,β)n and P(α,β+t)m for m,n∈N is discussed for α and β in this range, t≥1, and new upper and lower bounds are derived for the zero of P(α,β)n that is less than −1. |
---|