Shell Polynomials and Dual Birth-Death Processes

This paper aims to clarify certain aspects of the relations between birth-death processes, measures solving a Stieltjes moment problem, and sets of parameters defining polynomial sequences that are orthogonal with respect to such a measure. Besides giving an overview of the basic features of these r...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Erik A. van Doorn
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147745
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Shell Polynomials and Dual Birth-Death Processes / Erik A. van Doorn // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147745
record_format dspace
spelling irk-123456789-1477452019-02-16T01:25:26Z Shell Polynomials and Dual Birth-Death Processes Erik A. van Doorn This paper aims to clarify certain aspects of the relations between birth-death processes, measures solving a Stieltjes moment problem, and sets of parameters defining polynomial sequences that are orthogonal with respect to such a measure. Besides giving an overview of the basic features of these relations, revealed to a large extent by Karlin and McGregor, we investigate a duality concept for birth-death processes introduced by Karlin and McGregor and its interpretation in the context of shell polynomials and the corresponding orthogonal polynomials. This interpretation leads to increased insight in duality, while it suggests a modification of the concept of similarity for birth-death processes. 2016 Article Shell Polynomials and Dual Birth-Death Processes / Erik A. van Doorn // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42C05; 60J80; 44A60 DOI:10.3842/SIGMA.2016.049 http://dspace.nbuv.gov.ua/handle/123456789/147745 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper aims to clarify certain aspects of the relations between birth-death processes, measures solving a Stieltjes moment problem, and sets of parameters defining polynomial sequences that are orthogonal with respect to such a measure. Besides giving an overview of the basic features of these relations, revealed to a large extent by Karlin and McGregor, we investigate a duality concept for birth-death processes introduced by Karlin and McGregor and its interpretation in the context of shell polynomials and the corresponding orthogonal polynomials. This interpretation leads to increased insight in duality, while it suggests a modification of the concept of similarity for birth-death processes.
format Article
author Erik A. van Doorn
spellingShingle Erik A. van Doorn
Shell Polynomials and Dual Birth-Death Processes
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Erik A. van Doorn
author_sort Erik A. van Doorn
title Shell Polynomials and Dual Birth-Death Processes
title_short Shell Polynomials and Dual Birth-Death Processes
title_full Shell Polynomials and Dual Birth-Death Processes
title_fullStr Shell Polynomials and Dual Birth-Death Processes
title_full_unstemmed Shell Polynomials and Dual Birth-Death Processes
title_sort shell polynomials and dual birth-death processes
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147745
citation_txt Shell Polynomials and Dual Birth-Death Processes / Erik A. van Doorn // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT erikavandoorn shellpolynomialsanddualbirthdeathprocesses
first_indexed 2023-05-20T17:28:12Z
last_indexed 2023-05-20T17:28:12Z
_version_ 1796153365119369216