Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials

We construct new families of vector orthogonal polynomials that have the property to be eigenfunctions of some differential operator. They are extensions of the Hermite and Laguerre polynomial systems. A third family, whose first member has been found by Y. Ben Cheikh and K. Douak is also constructe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Horozov, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147746
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials / E. Horozov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147746
record_format dspace
spelling irk-123456789-1477462019-02-16T01:25:27Z Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials Horozov, E. We construct new families of vector orthogonal polynomials that have the property to be eigenfunctions of some differential operator. They are extensions of the Hermite and Laguerre polynomial systems. A third family, whose first member has been found by Y. Ben Cheikh and K. Douak is also constructed. The ideas behind our approach lie in the studies of bispectral operators. We exploit automorphisms of associative algebras which transform elementary vector orthogonal polynomial systems which are eigenfunctions of a differential operator into other systems of this type. 2016 Article Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials / E. Horozov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34L20; 30C15; 33E05 DOI:10.3842/SIGMA.2016.050 http://dspace.nbuv.gov.ua/handle/123456789/147746 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We construct new families of vector orthogonal polynomials that have the property to be eigenfunctions of some differential operator. They are extensions of the Hermite and Laguerre polynomial systems. A third family, whose first member has been found by Y. Ben Cheikh and K. Douak is also constructed. The ideas behind our approach lie in the studies of bispectral operators. We exploit automorphisms of associative algebras which transform elementary vector orthogonal polynomial systems which are eigenfunctions of a differential operator into other systems of this type.
format Article
author Horozov, E.
spellingShingle Horozov, E.
Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Horozov, E.
author_sort Horozov, E.
title Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials
title_short Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials
title_full Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials
title_fullStr Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials
title_full_unstemmed Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials
title_sort automorphisms of algebras and bochner's property for vector orthogonal polynomials
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147746
citation_txt Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials / E. Horozov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT horozove automorphismsofalgebrasandbochnerspropertyforvectororthogonalpolynomials
first_indexed 2023-05-20T17:28:12Z
last_indexed 2023-05-20T17:28:12Z
_version_ 1796153365225275392