Multidimensional Toda Lattices: Continuous and Discrete Time
In this paper we present multidimensional analogues of both the continuous- and discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal polynomial approach for the continuous and discrete Tod...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147750 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Multidimensional Toda Lattices: Continuous and Discrete Time / A.I. Aptekarev, M. Derevyagin, H. Miki, W. Van Assche // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 56 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147750 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1477502019-02-16T01:23:15Z Multidimensional Toda Lattices: Continuous and Discrete Time Aptekarev, A.I. Derevyagin, M. Miki, H. Van Assche, W. In this paper we present multidimensional analogues of both the continuous- and discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal polynomial approach for the continuous and discrete Toda lattices to the case of multiple orthogonal polynomials. 2016 Article Multidimensional Toda Lattices: Continuous and Discrete Time / A.I. Aptekarev, M. Derevyagin, H. Miki, W. Van Assche // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 56 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42C05; 37K10; 39A14; 65Q10 DOI:10.3842/SIGMA.2016.054 http://dspace.nbuv.gov.ua/handle/123456789/147750 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we present multidimensional analogues of both the continuous- and discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal polynomial approach for the continuous and discrete Toda lattices to the case of multiple orthogonal polynomials. |
format |
Article |
author |
Aptekarev, A.I. Derevyagin, M. Miki, H. Van Assche, W. |
spellingShingle |
Aptekarev, A.I. Derevyagin, M. Miki, H. Van Assche, W. Multidimensional Toda Lattices: Continuous and Discrete Time Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Aptekarev, A.I. Derevyagin, M. Miki, H. Van Assche, W. |
author_sort |
Aptekarev, A.I. |
title |
Multidimensional Toda Lattices: Continuous and Discrete Time |
title_short |
Multidimensional Toda Lattices: Continuous and Discrete Time |
title_full |
Multidimensional Toda Lattices: Continuous and Discrete Time |
title_fullStr |
Multidimensional Toda Lattices: Continuous and Discrete Time |
title_full_unstemmed |
Multidimensional Toda Lattices: Continuous and Discrete Time |
title_sort |
multidimensional toda lattices: continuous and discrete time |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147750 |
citation_txt |
Multidimensional Toda Lattices: Continuous and Discrete Time / A.I. Aptekarev, M. Derevyagin, H. Miki, W. Van Assche // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 56 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT aptekarevai multidimensionaltodalatticescontinuousanddiscretetime AT derevyaginm multidimensionaltodalatticescontinuousanddiscretetime AT mikih multidimensionaltodalatticescontinuousanddiscretetime AT vanasschew multidimensionaltodalatticescontinuousanddiscretetime |
first_indexed |
2023-05-20T17:28:13Z |
last_indexed |
2023-05-20T17:28:13Z |
_version_ |
1796153370766999552 |