The Multi-Orientable Random Tensor Model, a Review
After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147752 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The Multi-Orientable Random Tensor Model, a Review / A. Tanasa // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147752 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1477522019-02-16T01:25:28Z The Multi-Orientable Random Tensor Model, a Review Tanasa, A. After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the 1/N expansion and of the large N limit (N being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit. 2016 Article The Multi-Orientable Random Tensor Model, a Review / A. Tanasa // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 05C90; 60B20; 81Q30; 81T99 DOI:10.3842/SIGMA.2016.056 http://dspace.nbuv.gov.ua/handle/123456789/147752 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the 1/N expansion and of the large N limit (N being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit. |
format |
Article |
author |
Tanasa, A. |
spellingShingle |
Tanasa, A. The Multi-Orientable Random Tensor Model, a Review Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Tanasa, A. |
author_sort |
Tanasa, A. |
title |
The Multi-Orientable Random Tensor Model, a Review |
title_short |
The Multi-Orientable Random Tensor Model, a Review |
title_full |
The Multi-Orientable Random Tensor Model, a Review |
title_fullStr |
The Multi-Orientable Random Tensor Model, a Review |
title_full_unstemmed |
The Multi-Orientable Random Tensor Model, a Review |
title_sort |
multi-orientable random tensor model, a review |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147752 |
citation_txt |
The Multi-Orientable Random Tensor Model, a Review / A. Tanasa // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 38 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT tanasaa themultiorientablerandomtensormodelareview AT tanasaa multiorientablerandomtensormodelareview |
first_indexed |
2023-05-20T17:28:13Z |
last_indexed |
2023-05-20T17:28:13Z |
_version_ |
1796153370977763328 |