Singular Instantons and Painlevé VI

We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU₂ on S⁴, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Muñiz Manasliski, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147753
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Singular Instantons and Painlevé VI / R. Muñiz Manasliski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147753
record_format dspace
spelling irk-123456789-1477532019-02-16T01:26:16Z Singular Instantons and Painlevé VI Muñiz Manasliski, R. We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU₂ on S⁴, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations (PVI) and we will give an explicit expression of the map between instantons and solutions to PVI. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of S⁴. This work is a generalization of [Muñiz Manasliski R., Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215-222] and [Muñiz Manasliski R., J. Geom. Phys. 59 (2009), 1036-1047, arXiv:1602.07221], where instantons without singularities are studied. 2016 Article Singular Instantons and Painlevé VI / R. Muñiz Manasliski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M55; 53C07; 53C28 DOI:10.3842/SIGMA.2016.057 http://dspace.nbuv.gov.ua/handle/123456789/147753 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU₂ on S⁴, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations (PVI) and we will give an explicit expression of the map between instantons and solutions to PVI. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of S⁴. This work is a generalization of [Muñiz Manasliski R., Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215-222] and [Muñiz Manasliski R., J. Geom. Phys. 59 (2009), 1036-1047, arXiv:1602.07221], where instantons without singularities are studied.
format Article
author Muñiz Manasliski, R.
spellingShingle Muñiz Manasliski, R.
Singular Instantons and Painlevé VI
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Muñiz Manasliski, R.
author_sort Muñiz Manasliski, R.
title Singular Instantons and Painlevé VI
title_short Singular Instantons and Painlevé VI
title_full Singular Instantons and Painlevé VI
title_fullStr Singular Instantons and Painlevé VI
title_full_unstemmed Singular Instantons and Painlevé VI
title_sort singular instantons and painlevé vi
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147753
citation_txt Singular Instantons and Painlevé VI / R. Muñiz Manasliski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT munizmanasliskir singularinstantonsandpainlevevi
first_indexed 2023-05-20T17:28:13Z
last_indexed 2023-05-20T17:28:13Z
_version_ 1796153371082620928