Reflection Positive Stochastic Processes Indexed by Lie Groups

Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symme...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Jorgensen, P.E.T., Neeb, K.H., Ólafsson, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147754
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Reflection Positive Stochastic Processes Indexed by Lie Groups / P.E.T. Jorgensen, K.H. Neeb, G. Ólafsson // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 68 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147754
record_format dspace
spelling irk-123456789-1477542019-02-16T01:24:20Z Reflection Positive Stochastic Processes Indexed by Lie Groups Jorgensen, P.E.T. Neeb, K.H. Ólafsson, G. Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations. 2016 Article Reflection Positive Stochastic Processes Indexed by Lie Groups / P.E.T. Jorgensen, K.H. Neeb, G. Ólafsson // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 68 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 22E45; 60G15; 81S40 DOI:10.3842/SIGMA.2016.058 http://dspace.nbuv.gov.ua/handle/123456789/147754 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.
format Article
author Jorgensen, P.E.T.
Neeb, K.H.
Ólafsson, G.
spellingShingle Jorgensen, P.E.T.
Neeb, K.H.
Ólafsson, G.
Reflection Positive Stochastic Processes Indexed by Lie Groups
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Jorgensen, P.E.T.
Neeb, K.H.
Ólafsson, G.
author_sort Jorgensen, P.E.T.
title Reflection Positive Stochastic Processes Indexed by Lie Groups
title_short Reflection Positive Stochastic Processes Indexed by Lie Groups
title_full Reflection Positive Stochastic Processes Indexed by Lie Groups
title_fullStr Reflection Positive Stochastic Processes Indexed by Lie Groups
title_full_unstemmed Reflection Positive Stochastic Processes Indexed by Lie Groups
title_sort reflection positive stochastic processes indexed by lie groups
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147754
citation_txt Reflection Positive Stochastic Processes Indexed by Lie Groups / P.E.T. Jorgensen, K.H. Neeb, G. Ólafsson // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 68 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT jorgensenpet reflectionpositivestochasticprocessesindexedbyliegroups
AT neebkh reflectionpositivestochasticprocessesindexedbyliegroups
AT olafssong reflectionpositivestochasticprocessesindexedbyliegroups
first_indexed 2023-05-20T17:28:13Z
last_indexed 2023-05-20T17:28:13Z
_version_ 1796153371188527104