Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature
Locally homogeneous Lorentzian three-manifolds with recurrect curvature are special examples of Walker manifolds, that is, they admit a parallel null vector field. We obtain a full classification of the symmetries of these spaces, with particular regard to symmetries related to their curvature: Ricc...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147760 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature / G. Calvaruso, A. Zaeim // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147760 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1477602019-02-16T01:26:10Z Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature Calvaruso, G. Zaeim, A. Locally homogeneous Lorentzian three-manifolds with recurrect curvature are special examples of Walker manifolds, that is, they admit a parallel null vector field. We obtain a full classification of the symmetries of these spaces, with particular regard to symmetries related to their curvature: Ricci and matter collineations, curvature and Weyl collineations. Several results are given for the broader class of three-dimensional Walker manifolds. 2016 Article Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature / G. Calvaruso, A. Zaeim // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C50; 53B30 DOI:10.3842/SIGMA.2016.063 http://dspace.nbuv.gov.ua/handle/123456789/147760 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Locally homogeneous Lorentzian three-manifolds with recurrect curvature are special examples of Walker manifolds, that is, they admit a parallel null vector field. We obtain a full classification of the symmetries of these spaces, with particular regard to symmetries related to their curvature: Ricci and matter collineations, curvature and Weyl collineations. Several results are given for the broader class of three-dimensional Walker manifolds. |
format |
Article |
author |
Calvaruso, G. Zaeim, A. |
spellingShingle |
Calvaruso, G. Zaeim, A. Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Calvaruso, G. Zaeim, A. |
author_sort |
Calvaruso, G. |
title |
Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature |
title_short |
Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature |
title_full |
Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature |
title_fullStr |
Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature |
title_full_unstemmed |
Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature |
title_sort |
symmetries of lorentzian three-manifolds with recurrent curvature |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147760 |
citation_txt |
Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature / G. Calvaruso, A. Zaeim // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT calvarusog symmetriesoflorentzianthreemanifoldswithrecurrentcurvature AT zaeima symmetriesoflorentzianthreemanifoldswithrecurrentcurvature |
first_indexed |
2023-05-20T17:28:29Z |
last_indexed |
2023-05-20T17:28:29Z |
_version_ |
1796153382245761024 |