Flowing in Group Field Theory Space: a Review

We provide a non-technical overview of recent extensions of renormalization methods and techniques to Group Field Theories (GFTs), a class of combinatorially non-local quantum field theories which generalize matrix models to dimension d≥3. More precisely, we focus on GFTs with so-called closure cons...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Carrozza, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147767
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Flowing in Group Field Theory Space: a Review / S. Carrozza // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 87 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147767
record_format dspace
spelling irk-123456789-1477672019-02-16T01:26:11Z Flowing in Group Field Theory Space: a Review Carrozza, S. We provide a non-technical overview of recent extensions of renormalization methods and techniques to Group Field Theories (GFTs), a class of combinatorially non-local quantum field theories which generalize matrix models to dimension d≥3. More precisely, we focus on GFTs with so-called closure constraint, which are closely related to lattice gauge theories and quantum gravity spin foam models. With the help of recent tensor model tools, a rich landscape of renormalizable theories has been unravelled. We review our current understanding of their renormalization group flows, at both perturbative and non-perturbative levels. 2016 Article Flowing in Group Field Theory Space: a Review / S. Carrozza // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 87 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81T15; 81T16; 83D27; 83C45 DOI:10.3842/SIGMA.2016.070 http://dspace.nbuv.gov.ua/handle/123456789/147767 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We provide a non-technical overview of recent extensions of renormalization methods and techniques to Group Field Theories (GFTs), a class of combinatorially non-local quantum field theories which generalize matrix models to dimension d≥3. More precisely, we focus on GFTs with so-called closure constraint, which are closely related to lattice gauge theories and quantum gravity spin foam models. With the help of recent tensor model tools, a rich landscape of renormalizable theories has been unravelled. We review our current understanding of their renormalization group flows, at both perturbative and non-perturbative levels.
format Article
author Carrozza, S.
spellingShingle Carrozza, S.
Flowing in Group Field Theory Space: a Review
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Carrozza, S.
author_sort Carrozza, S.
title Flowing in Group Field Theory Space: a Review
title_short Flowing in Group Field Theory Space: a Review
title_full Flowing in Group Field Theory Space: a Review
title_fullStr Flowing in Group Field Theory Space: a Review
title_full_unstemmed Flowing in Group Field Theory Space: a Review
title_sort flowing in group field theory space: a review
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147767
citation_txt Flowing in Group Field Theory Space: a Review / S. Carrozza // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 87 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT carrozzas flowingingroupfieldtheoryspaceareview
first_indexed 2023-05-20T17:28:30Z
last_indexed 2023-05-20T17:28:30Z
_version_ 1796153382980812800