Laurent Polynomials and Superintegrable Maps

This article is dedicated to the memory of Vadim Kuznetsov, and begins with some of the author's recollections of him. Thereafter, a brief review of Somos sequences is provided, with particular focus being made on the integrable structure of Somos-4 recurrences, and on the Laurent property. Sub...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Hone, A.N.W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147785
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Laurent Polynomials and Superintegrable Maps / A.N.W. Hone // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 68 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147785
record_format dspace
spelling irk-123456789-1477852019-02-17T01:26:39Z Laurent Polynomials and Superintegrable Maps Hone, A.N.W. This article is dedicated to the memory of Vadim Kuznetsov, and begins with some of the author's recollections of him. Thereafter, a brief review of Somos sequences is provided, with particular focus being made on the integrable structure of Somos-4 recurrences, and on the Laurent property. Subsequently a family of fourth-order recurrences that share the Laurent property are considered, which are equivalent to Poisson maps in four dimensions. Two of these maps turn out to be superintegrable, and their iteration furnishes infinitely many solutions of some associated quartic Diophantine equations. 2007 Article Laurent Polynomials and Superintegrable Maps / A.N.W. Hone // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 68 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 11B37; 33E05; 37J35 http://dspace.nbuv.gov.ua/handle/123456789/147785 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This article is dedicated to the memory of Vadim Kuznetsov, and begins with some of the author's recollections of him. Thereafter, a brief review of Somos sequences is provided, with particular focus being made on the integrable structure of Somos-4 recurrences, and on the Laurent property. Subsequently a family of fourth-order recurrences that share the Laurent property are considered, which are equivalent to Poisson maps in four dimensions. Two of these maps turn out to be superintegrable, and their iteration furnishes infinitely many solutions of some associated quartic Diophantine equations.
format Article
author Hone, A.N.W.
spellingShingle Hone, A.N.W.
Laurent Polynomials and Superintegrable Maps
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Hone, A.N.W.
author_sort Hone, A.N.W.
title Laurent Polynomials and Superintegrable Maps
title_short Laurent Polynomials and Superintegrable Maps
title_full Laurent Polynomials and Superintegrable Maps
title_fullStr Laurent Polynomials and Superintegrable Maps
title_full_unstemmed Laurent Polynomials and Superintegrable Maps
title_sort laurent polynomials and superintegrable maps
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147785
citation_txt Laurent Polynomials and Superintegrable Maps / A.N.W. Hone // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 68 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT honeanw laurentpolynomialsandsuperintegrablemaps
first_indexed 2023-05-20T17:28:31Z
last_indexed 2023-05-20T17:28:31Z
_version_ 1796153383296434176