2025-02-23T00:48:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147786%22&qt=morelikethis&rows=5
2025-02-23T00:48:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147786%22&qt=morelikethis&rows=5
2025-02-23T00:48:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T00:48:32-05:00 DEBUG: Deserialized SOLR response
Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds
Given a n-dimensional Riemannian manifold of arbitrary signature, we illustrate an algebraic method for constructing the coordinate webs separating the geodesic Hamilton-Jacobi equation by means of the eigenvalues of m ≤ n Killing two-tensors. Moreover, from the analysis of the eigenvalues, informat...
Saved in:
Main Authors: | Chanu, C., Rastelli, G. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2007
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147786 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T00:48:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147786%22&qt=morelikethis
2025-02-23T00:48:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147786%22&qt=morelikethis
2025-02-23T00:48:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T00:48:32-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Separability in Riemannian Manifolds
by: Benenti, S.
Published: (2016) -
On prime ends on Riemannian manifolds
by: D. P. Iljutko, et al.
Published: (2018) -
A Quartic Conformally Covariant Differential Operator for Arbitrary Pseudo-Riemannian Manifolds (Summary)
by: Paneitz, S.M.
Published: (2008) -
Compact Riemannian Manifolds with Homogeneous Geodesics
by: Alekseevsky, D.V., et al.
Published: (2009) -
Quasisymmetric mappings and their generalizations on Riemannian manifolds
by: E. S. Afanas'eva, et al.
Published: (2021)