Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
We use a Grassmannian framework to define multi-component tau functions as expectation values of certain multi-component Fermi operators satisfying simple bilinear commutation relations on Clifford algebra. The tau functions contain both positive and negative flows and are shown to satisfy the 2n-co...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147787 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows / H. Aratyn, J. van de Leur // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147787 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1477872019-02-17T01:27:15Z Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows Aratyn, H. van de Leur, J. We use a Grassmannian framework to define multi-component tau functions as expectation values of certain multi-component Fermi operators satisfying simple bilinear commutation relations on Clifford algebra. The tau functions contain both positive and negative flows and are shown to satisfy the 2n-component KP hierarchy. The hierarchy equations can be formulated in terms of pseudo-differential equations for n × n matrix wave functions derived in terms of tau functions. These equations are cast in form of Sato-Wilson relations. A reduction process leads to the AKNS, two-component Camassa-Holm and Cecotti-Vafa models and the formalism provides simple formulas for their solutions. 2007 Article Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows / H. Aratyn, J. van de Leur // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 11E88; 17B67; 22E67; 37K10 http://dspace.nbuv.gov.ua/handle/123456789/147787 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We use a Grassmannian framework to define multi-component tau functions as expectation values of certain multi-component Fermi operators satisfying simple bilinear commutation relations on Clifford algebra. The tau functions contain both positive and negative flows and are shown to satisfy the 2n-component KP hierarchy. The hierarchy equations can be formulated in terms of pseudo-differential equations for n × n matrix wave functions derived in terms of tau functions. These equations are cast in form of Sato-Wilson relations. A reduction process leads to the AKNS, two-component Camassa-Holm and Cecotti-Vafa models and the formalism provides simple formulas for their solutions. |
format |
Article |
author |
Aratyn, H. van de Leur, J. |
spellingShingle |
Aratyn, H. van de Leur, J. Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Aratyn, H. van de Leur, J. |
author_sort |
Aratyn, H. |
title |
Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows |
title_short |
Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows |
title_full |
Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows |
title_fullStr |
Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows |
title_full_unstemmed |
Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows |
title_sort |
clifford algebra derivations of tau-functions for two-dimensional integrable models with positive and negative flows |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147787 |
citation_txt |
Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows / H. Aratyn, J. van de Leur // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT aratynh cliffordalgebraderivationsoftaufunctionsfortwodimensionalintegrablemodelswithpositiveandnegativeflows AT vandeleurj cliffordalgebraderivationsoftaufunctionsfortwodimensionalintegrablemodelswithpositiveandnegativeflows |
first_indexed |
2023-05-20T17:28:31Z |
last_indexed |
2023-05-20T17:28:31Z |
_version_ |
1796153383506149376 |