Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature

An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3) integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R) Poisson coalgebra symmetry. As a concret...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Ragnisco, O., Ballesteros, A., Herranz, F.J., Musso, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147788
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature / O. Ragnisco, Á. Ballesteros, F.J. Herranz, F. Musso // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 42 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3) integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R) Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter z. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry.