Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3) integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R) Poisson coalgebra symmetry. As a concret...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147788 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature / O. Ragnisco, Á. Ballesteros, F.J. Herranz, F. Musso // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 42 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147788 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1477882019-02-17T01:25:00Z Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature Ragnisco, O. Ballesteros, A. Herranz, F.J. Musso, F. An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3) integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R) Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter z. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry. 2007 Article Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature / O. Ragnisco, Á. Ballesteros, F.J. Herranz, F. Musso // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 42 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37J35; 17B37 http://dspace.nbuv.gov.ua/handle/123456789/147788 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3) integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R) Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter z. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry. |
format |
Article |
author |
Ragnisco, O. Ballesteros, A. Herranz, F.J. Musso, F. |
spellingShingle |
Ragnisco, O. Ballesteros, A. Herranz, F.J. Musso, F. Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Ragnisco, O. Ballesteros, A. Herranz, F.J. Musso, F. |
author_sort |
Ragnisco, O. |
title |
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature |
title_short |
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature |
title_full |
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature |
title_fullStr |
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature |
title_full_unstemmed |
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature |
title_sort |
quantum deformations and superintegrable motions on spaces with variable curvature |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147788 |
citation_txt |
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature / O. Ragnisco, Á. Ballesteros, F.J. Herranz, F. Musso // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 42 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT ragniscoo quantumdeformationsandsuperintegrablemotionsonspaceswithvariablecurvature AT ballesterosa quantumdeformationsandsuperintegrablemotionsonspaceswithvariablecurvature AT herranzfj quantumdeformationsandsuperintegrablemotionsonspaceswithvariablecurvature AT mussof quantumdeformationsandsuperintegrablemotionsonspaceswithvariablecurvature |
first_indexed |
2023-05-20T17:28:31Z |
last_indexed |
2023-05-20T17:28:31Z |
_version_ |
1796153383613104128 |