Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature

An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3) integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R) Poisson coalgebra symmetry. As a concret...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Ragnisco, O., Ballesteros, A., Herranz, F.J., Musso, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147788
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature / O. Ragnisco, Á. Ballesteros, F.J. Herranz, F. Musso // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 42 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147788
record_format dspace
spelling irk-123456789-1477882019-02-17T01:25:00Z Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature Ragnisco, O. Ballesteros, A. Herranz, F.J. Musso, F. An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3) integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R) Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter z. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry. 2007 Article Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature / O. Ragnisco, Á. Ballesteros, F.J. Herranz, F. Musso // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 42 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37J35; 17B37 http://dspace.nbuv.gov.ua/handle/123456789/147788 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3) integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R) Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter z. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry.
format Article
author Ragnisco, O.
Ballesteros, A.
Herranz, F.J.
Musso, F.
spellingShingle Ragnisco, O.
Ballesteros, A.
Herranz, F.J.
Musso, F.
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ragnisco, O.
Ballesteros, A.
Herranz, F.J.
Musso, F.
author_sort Ragnisco, O.
title Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
title_short Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
title_full Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
title_fullStr Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
title_full_unstemmed Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
title_sort quantum deformations and superintegrable motions on spaces with variable curvature
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147788
citation_txt Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature / O. Ragnisco, Á. Ballesteros, F.J. Herranz, F. Musso // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 42 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ragniscoo quantumdeformationsandsuperintegrablemotionsonspaceswithvariablecurvature
AT ballesterosa quantumdeformationsandsuperintegrablemotionsonspaceswithvariablecurvature
AT herranzfj quantumdeformationsandsuperintegrablemotionsonspaceswithvariablecurvature
AT mussof quantumdeformationsandsuperintegrablemotionsonspaceswithvariablecurvature
first_indexed 2023-05-20T17:28:31Z
last_indexed 2023-05-20T17:28:31Z
_version_ 1796153383613104128