Quantum Super-Integrable Systems as Exactly Solvable Models

We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between super-integrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dime...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Fordy, A.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147791
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Super-Integrable Systems as Exactly Solvable Models / A.P. Fordy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147791
record_format dspace
spelling irk-123456789-1477912019-02-17T01:27:15Z Quantum Super-Integrable Systems as Exactly Solvable Models Fordy, A.P. We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between super-integrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dimensional representations of the quadratic algebras are thus constructed in a way analogous to that of the highest weight representations of Lie algebras. 2007 Article Quantum Super-Integrable Systems as Exactly Solvable Models / A.P. Fordy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35Q40; 70H06 http://dspace.nbuv.gov.ua/handle/123456789/147791 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between super-integrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dimensional representations of the quadratic algebras are thus constructed in a way analogous to that of the highest weight representations of Lie algebras.
format Article
author Fordy, A.P.
spellingShingle Fordy, A.P.
Quantum Super-Integrable Systems as Exactly Solvable Models
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Fordy, A.P.
author_sort Fordy, A.P.
title Quantum Super-Integrable Systems as Exactly Solvable Models
title_short Quantum Super-Integrable Systems as Exactly Solvable Models
title_full Quantum Super-Integrable Systems as Exactly Solvable Models
title_fullStr Quantum Super-Integrable Systems as Exactly Solvable Models
title_full_unstemmed Quantum Super-Integrable Systems as Exactly Solvable Models
title_sort quantum super-integrable systems as exactly solvable models
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147791
citation_txt Quantum Super-Integrable Systems as Exactly Solvable Models / A.P. Fordy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT fordyap quantumsuperintegrablesystemsasexactlysolvablemodels
first_indexed 2023-05-20T17:28:32Z
last_indexed 2023-05-20T17:28:32Z
_version_ 1796153383927676928