Quantum Super-Integrable Systems as Exactly Solvable Models
We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between super-integrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dime...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147791 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Quantum Super-Integrable Systems as Exactly Solvable Models / A.P. Fordy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147791 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1477912019-02-17T01:27:15Z Quantum Super-Integrable Systems as Exactly Solvable Models Fordy, A.P. We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between super-integrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dimensional representations of the quadratic algebras are thus constructed in a way analogous to that of the highest weight representations of Lie algebras. 2007 Article Quantum Super-Integrable Systems as Exactly Solvable Models / A.P. Fordy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35Q40; 70H06 http://dspace.nbuv.gov.ua/handle/123456789/147791 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider some examples of quantum super-integrable systems and the associated nonlinear extensions of Lie algebras. The intimate relationship between super-integrability and exact solvability is illustrated. Eigenfunctions are constructed through the action of the commuting operators. Finite dimensional representations of the quadratic algebras are thus constructed in a way analogous to that of the highest weight representations of Lie algebras. |
format |
Article |
author |
Fordy, A.P. |
spellingShingle |
Fordy, A.P. Quantum Super-Integrable Systems as Exactly Solvable Models Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Fordy, A.P. |
author_sort |
Fordy, A.P. |
title |
Quantum Super-Integrable Systems as Exactly Solvable Models |
title_short |
Quantum Super-Integrable Systems as Exactly Solvable Models |
title_full |
Quantum Super-Integrable Systems as Exactly Solvable Models |
title_fullStr |
Quantum Super-Integrable Systems as Exactly Solvable Models |
title_full_unstemmed |
Quantum Super-Integrable Systems as Exactly Solvable Models |
title_sort |
quantum super-integrable systems as exactly solvable models |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147791 |
citation_txt |
Quantum Super-Integrable Systems as Exactly Solvable Models / A.P. Fordy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT fordyap quantumsuperintegrablesystemsasexactlysolvablemodels |
first_indexed |
2023-05-20T17:28:32Z |
last_indexed |
2023-05-20T17:28:32Z |
_version_ |
1796153383927676928 |