A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold

We review properties of so-called special conformal Killing tensors on a Riemannian manifold (Q,g) and the way they give rise to a Poisson-Nijenhuis structure on the tangent bundle TQ. We then address the question of generalizing this concept to a Finsler space, where the metric tensor field comes f...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Sarlet, W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147793
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold / W. Sarlet // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147793
record_format dspace
spelling irk-123456789-1477932019-02-17T01:27:26Z A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold Sarlet, W. We review properties of so-called special conformal Killing tensors on a Riemannian manifold (Q,g) and the way they give rise to a Poisson-Nijenhuis structure on the tangent bundle TQ. We then address the question of generalizing this concept to a Finsler space, where the metric tensor field comes from a regular Lagrangian function E, homogeneous of degree two in the fibre coordinates on TQ. It is shown that when a symmetric type (1,1) tensor field K along the tangent bundle projection τ: TQ→ Q satisfies a differential condition which is similar to the defining relation of special conformal Killing tensors, there exists a direct recursive scheme again for first integrals of the geodesic spray. Involutivity of such integrals, unfortunately, remains an open problem. Remove selected 2007 Article A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold / W. Sarlet // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 6 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37J35; 53C60; 70H06 http://dspace.nbuv.gov.ua/handle/123456789/147793 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We review properties of so-called special conformal Killing tensors on a Riemannian manifold (Q,g) and the way they give rise to a Poisson-Nijenhuis structure on the tangent bundle TQ. We then address the question of generalizing this concept to a Finsler space, where the metric tensor field comes from a regular Lagrangian function E, homogeneous of degree two in the fibre coordinates on TQ. It is shown that when a symmetric type (1,1) tensor field K along the tangent bundle projection τ: TQ→ Q satisfies a differential condition which is similar to the defining relation of special conformal Killing tensors, there exists a direct recursive scheme again for first integrals of the geodesic spray. Involutivity of such integrals, unfortunately, remains an open problem. Remove selected
format Article
author Sarlet, W.
spellingShingle Sarlet, W.
A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Sarlet, W.
author_sort Sarlet, W.
title A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold
title_short A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold
title_full A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold
title_fullStr A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold
title_full_unstemmed A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold
title_sort recursive scheme of first integrals of the geodesic flow of a finsler manifold
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147793
citation_txt A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold / W. Sarlet // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 6 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT sarletw arecursiveschemeoffirstintegralsofthegeodesicflowofafinslermanifold
AT sarletw recursiveschemeoffirstintegralsofthegeodesicflowofafinslermanifold
first_indexed 2023-05-20T17:28:32Z
last_indexed 2023-05-20T17:28:32Z
_version_ 1796153384138440704