Boundary Liouville Theory: Hamiltonian Description and Quantization
The paper is devoted to the Hamiltonian treatment of classical and quantum properties of Liouville field theory on a timelike strip in 2d Minkowski space. We give a complete description of classical solutions regular in the interior of the strip and obeying constant conformally invariant conditions...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147798 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Boundary Liouville Theory: Hamiltonian Description and Quantization / H. Dorn, G. Jorjadze // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147798 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1477982019-02-17T01:26:41Z Boundary Liouville Theory: Hamiltonian Description and Quantization Dorn, H. Jorjadze, G. The paper is devoted to the Hamiltonian treatment of classical and quantum properties of Liouville field theory on a timelike strip in 2d Minkowski space. We give a complete description of classical solutions regular in the interior of the strip and obeying constant conformally invariant conditions on both boundaries. Depending on the values of the two boundary parameters these solutions may have different monodromy properties and are related to bound or scattering states. By Bohr-Sommerfeld quantization we find the quasiclassical discrete energy spectrum for the bound states in agreement with the corresponding limit of spectral data obtained previously by conformal bootstrap methods in Euclidean space. The full quantum version of the special vertex operator e-φ in terms of free field exponentials is constructed in the hyperbolic sector. 2007 Article Boundary Liouville Theory: Hamiltonian Description and Quantization / H. Dorn, G. Jorjadze // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 19 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K05; 37K30; 81T30; 81T40 http://dspace.nbuv.gov.ua/handle/123456789/147798 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The paper is devoted to the Hamiltonian treatment of classical and quantum properties of Liouville field theory on a timelike strip in 2d Minkowski space. We give a complete description of classical solutions regular in the interior of the strip and obeying constant conformally invariant conditions on both boundaries. Depending on the values of the two boundary parameters these solutions may have different monodromy properties and are related to bound or scattering states. By Bohr-Sommerfeld quantization we find the quasiclassical discrete energy spectrum for the bound states in agreement with the corresponding limit of spectral data obtained previously by conformal bootstrap methods in Euclidean space. The full quantum version of the special vertex operator e-φ in terms of free field exponentials is constructed in the hyperbolic sector. |
format |
Article |
author |
Dorn, H. Jorjadze, G. |
spellingShingle |
Dorn, H. Jorjadze, G. Boundary Liouville Theory: Hamiltonian Description and Quantization Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Dorn, H. Jorjadze, G. |
author_sort |
Dorn, H. |
title |
Boundary Liouville Theory: Hamiltonian Description and Quantization |
title_short |
Boundary Liouville Theory: Hamiltonian Description and Quantization |
title_full |
Boundary Liouville Theory: Hamiltonian Description and Quantization |
title_fullStr |
Boundary Liouville Theory: Hamiltonian Description and Quantization |
title_full_unstemmed |
Boundary Liouville Theory: Hamiltonian Description and Quantization |
title_sort |
boundary liouville theory: hamiltonian description and quantization |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147798 |
citation_txt |
Boundary Liouville Theory: Hamiltonian Description and Quantization / H. Dorn, G. Jorjadze // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 19 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT dornh boundaryliouvilletheoryhamiltoniandescriptionandquantization AT jorjadzeg boundaryliouvilletheoryhamiltoniandescriptionandquantization |
first_indexed |
2023-05-20T17:28:33Z |
last_indexed |
2023-05-20T17:28:33Z |
_version_ |
1796153389527072768 |