Lie Symmetries and Criticality of Semilinear Differential Systems

We discuss the notion of criticality of semilinear differential equations and systems, its relations to scaling transformations and the Noether approach to Pokhozhaev's identities. For this purpose we propose a definition for criticality based on the S. Lie symmetry theory. We show that this de...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Bozhkov, Y., Mitidieri, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147807
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Lie Symmetries and Criticality of Semilinear Differential Systems / Y. Bozhkov, E. Mitidieri // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 39 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147807
record_format dspace
spelling irk-123456789-1478072019-02-17T01:24:10Z Lie Symmetries and Criticality of Semilinear Differential Systems Bozhkov, Y. Mitidieri, E. We discuss the notion of criticality of semilinear differential equations and systems, its relations to scaling transformations and the Noether approach to Pokhozhaev's identities. For this purpose we propose a definition for criticality based on the S. Lie symmetry theory. We show that this definition is compatible with the well-known notion of critical exponent by considering various examples. We also review some related recent papers. 2007 Article Lie Symmetries and Criticality of Semilinear Differential Systems / Y. Bozhkov, E. Mitidieri // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 39 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35J50; 35J20; 35J60; 35L70 http://dspace.nbuv.gov.ua/handle/123456789/147807 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We discuss the notion of criticality of semilinear differential equations and systems, its relations to scaling transformations and the Noether approach to Pokhozhaev's identities. For this purpose we propose a definition for criticality based on the S. Lie symmetry theory. We show that this definition is compatible with the well-known notion of critical exponent by considering various examples. We also review some related recent papers.
format Article
author Bozhkov, Y.
Mitidieri, E.
spellingShingle Bozhkov, Y.
Mitidieri, E.
Lie Symmetries and Criticality of Semilinear Differential Systems
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bozhkov, Y.
Mitidieri, E.
author_sort Bozhkov, Y.
title Lie Symmetries and Criticality of Semilinear Differential Systems
title_short Lie Symmetries and Criticality of Semilinear Differential Systems
title_full Lie Symmetries and Criticality of Semilinear Differential Systems
title_fullStr Lie Symmetries and Criticality of Semilinear Differential Systems
title_full_unstemmed Lie Symmetries and Criticality of Semilinear Differential Systems
title_sort lie symmetries and criticality of semilinear differential systems
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147807
citation_txt Lie Symmetries and Criticality of Semilinear Differential Systems / Y. Bozhkov, E. Mitidieri // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 39 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bozhkovy liesymmetriesandcriticalityofsemilineardifferentialsystems
AT mitidierie liesymmetriesandcriticalityofsemilineardifferentialsystems
first_indexed 2023-05-20T17:28:15Z
last_indexed 2023-05-20T17:28:15Z
_version_ 1796153371714912256