Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity

The Cauchy problem for the Fokker-Plank-Kolmogorov equation with a nonlocal nonlinear drift term is reduced to a similar problem for the correspondent linear equation. The relation between symmetry operators of the linear and nonlinear Fokker-Plank-Kolmogorov equations is considered. Illustrative ex...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Shapovalov, A.V., Rezaev, R.O., Trifonov, A.Yu.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147811
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity / A.V. Shapovalov, R.O. Rezaev and A.Yu. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 33 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147811
record_format dspace
spelling irk-123456789-1478112019-02-17T01:27:58Z Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity Shapovalov, A.V. Rezaev, R.O. Trifonov, A.Yu. The Cauchy problem for the Fokker-Plank-Kolmogorov equation with a nonlocal nonlinear drift term is reduced to a similar problem for the correspondent linear equation. The relation between symmetry operators of the linear and nonlinear Fokker-Plank-Kolmogorov equations is considered. Illustrative examples of the one-dimensional symmetry operators are presented. 2007 Article Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity / A.V. Shapovalov, R.O. Rezaev and A.Yu. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 33 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35Q58; 37J15 http://dspace.nbuv.gov.ua/handle/123456789/147811 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The Cauchy problem for the Fokker-Plank-Kolmogorov equation with a nonlocal nonlinear drift term is reduced to a similar problem for the correspondent linear equation. The relation between symmetry operators of the linear and nonlinear Fokker-Plank-Kolmogorov equations is considered. Illustrative examples of the one-dimensional symmetry operators are presented.
format Article
author Shapovalov, A.V.
Rezaev, R.O.
Trifonov, A.Yu.
spellingShingle Shapovalov, A.V.
Rezaev, R.O.
Trifonov, A.Yu.
Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Shapovalov, A.V.
Rezaev, R.O.
Trifonov, A.Yu.
author_sort Shapovalov, A.V.
title Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity
title_short Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity
title_full Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity
title_fullStr Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity
title_full_unstemmed Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity
title_sort symmetry operators for the fokker-plank-kolmogorov equation with nonlocal quadratic nonlinearity
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147811
citation_txt Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity / A.V. Shapovalov, R.O. Rezaev and A.Yu. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 33 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT shapovalovav symmetryoperatorsforthefokkerplankkolmogorovequationwithnonlocalquadraticnonlinearity
AT rezaevro symmetryoperatorsforthefokkerplankkolmogorovequationwithnonlocalquadraticnonlinearity
AT trifonovayu symmetryoperatorsforthefokkerplankkolmogorovequationwithnonlocalquadraticnonlinearity
first_indexed 2023-05-20T17:28:34Z
last_indexed 2023-05-20T17:28:34Z
_version_ 1796153390263173120