Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity
The Cauchy problem for the Fokker-Plank-Kolmogorov equation with a nonlocal nonlinear drift term is reduced to a similar problem for the correspondent linear equation. The relation between symmetry operators of the linear and nonlinear Fokker-Plank-Kolmogorov equations is considered. Illustrative ex...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147811 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity / A.V. Shapovalov, R.O. Rezaev and A.Yu. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 33 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147811 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1478112019-02-17T01:27:58Z Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity Shapovalov, A.V. Rezaev, R.O. Trifonov, A.Yu. The Cauchy problem for the Fokker-Plank-Kolmogorov equation with a nonlocal nonlinear drift term is reduced to a similar problem for the correspondent linear equation. The relation between symmetry operators of the linear and nonlinear Fokker-Plank-Kolmogorov equations is considered. Illustrative examples of the one-dimensional symmetry operators are presented. 2007 Article Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity / A.V. Shapovalov, R.O. Rezaev and A.Yu. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 33 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35Q58; 37J15 http://dspace.nbuv.gov.ua/handle/123456789/147811 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The Cauchy problem for the Fokker-Plank-Kolmogorov equation with a nonlocal nonlinear drift term is reduced to a similar problem for the correspondent linear equation. The relation between symmetry operators of the linear and nonlinear Fokker-Plank-Kolmogorov equations is considered. Illustrative examples of the one-dimensional symmetry operators are presented. |
format |
Article |
author |
Shapovalov, A.V. Rezaev, R.O. Trifonov, A.Yu. |
spellingShingle |
Shapovalov, A.V. Rezaev, R.O. Trifonov, A.Yu. Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Shapovalov, A.V. Rezaev, R.O. Trifonov, A.Yu. |
author_sort |
Shapovalov, A.V. |
title |
Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity |
title_short |
Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity |
title_full |
Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity |
title_fullStr |
Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity |
title_full_unstemmed |
Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity |
title_sort |
symmetry operators for the fokker-plank-kolmogorov equation with nonlocal quadratic nonlinearity |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147811 |
citation_txt |
Symmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity / A.V. Shapovalov, R.O. Rezaev and A.Yu. Trifonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 33 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT shapovalovav symmetryoperatorsforthefokkerplankkolmogorovequationwithnonlocalquadraticnonlinearity AT rezaevro symmetryoperatorsforthefokkerplankkolmogorovequationwithnonlocalquadraticnonlinearity AT trifonovayu symmetryoperatorsforthefokkerplankkolmogorovequationwithnonlocalquadraticnonlinearity |
first_indexed |
2023-05-20T17:28:34Z |
last_indexed |
2023-05-20T17:28:34Z |
_version_ |
1796153390263173120 |