Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group

Elliptic quantum groups can be associated to solutions of the star-triangle relation of statistical mechanics. In this paper, we consider the particular case of the Eτ,η(so₃) elliptic quantum group. In the context of algebraic Bethe ansatz, we construct the corresponding Bethe creation operator for...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Manojlović, N., Nagy, Z.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147812
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group / N. Manojlović, Z. Nagy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147812
record_format dspace
spelling irk-123456789-1478122019-02-17T01:27:51Z Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group Manojlović, N. Nagy, Z. Elliptic quantum groups can be associated to solutions of the star-triangle relation of statistical mechanics. In this paper, we consider the particular case of the Eτ,η(so₃) elliptic quantum group. In the context of algebraic Bethe ansatz, we construct the corresponding Bethe creation operator for the transfer matrix defined in an arbitrary representation of Eτ,η(so₃). 2007 Article Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group / N. Manojlović, Z. Nagy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 13 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 82B23; 81R12; 81R50 http://dspace.nbuv.gov.ua/handle/123456789/147812 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Elliptic quantum groups can be associated to solutions of the star-triangle relation of statistical mechanics. In this paper, we consider the particular case of the Eτ,η(so₃) elliptic quantum group. In the context of algebraic Bethe ansatz, we construct the corresponding Bethe creation operator for the transfer matrix defined in an arbitrary representation of Eτ,η(so₃).
format Article
author Manojlović, N.
Nagy, Z.
spellingShingle Manojlović, N.
Nagy, Z.
Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Manojlović, N.
Nagy, Z.
author_sort Manojlović, N.
title Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group
title_short Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group
title_full Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group
title_fullStr Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group
title_full_unstemmed Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group
title_sort construction of the bethe state for the eτ,η(so₃) elliptic quantum group
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147812
citation_txt Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group / N. Manojlović, Z. Nagy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 13 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT manojlovicn constructionofthebethestatefortheetēso3ellipticquantumgroup
AT nagyz constructionofthebethestatefortheetēso3ellipticquantumgroup
first_indexed 2023-05-20T17:28:34Z
last_indexed 2023-05-20T17:28:34Z
_version_ 1796153390370127872