Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group
Elliptic quantum groups can be associated to solutions of the star-triangle relation of statistical mechanics. In this paper, we consider the particular case of the Eτ,η(so₃) elliptic quantum group. In the context of algebraic Bethe ansatz, we construct the corresponding Bethe creation operator for...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147812 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group / N. Manojlović, Z. Nagy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147812 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1478122019-02-17T01:27:51Z Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group Manojlović, N. Nagy, Z. Elliptic quantum groups can be associated to solutions of the star-triangle relation of statistical mechanics. In this paper, we consider the particular case of the Eτ,η(so₃) elliptic quantum group. In the context of algebraic Bethe ansatz, we construct the corresponding Bethe creation operator for the transfer matrix defined in an arbitrary representation of Eτ,η(so₃). 2007 Article Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group / N. Manojlović, Z. Nagy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 13 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 82B23; 81R12; 81R50 http://dspace.nbuv.gov.ua/handle/123456789/147812 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Elliptic quantum groups can be associated to solutions of the star-triangle relation of statistical mechanics. In this paper, we consider the particular case of the Eτ,η(so₃) elliptic quantum group. In the context of algebraic Bethe ansatz, we construct the corresponding Bethe creation operator for the transfer matrix defined in an arbitrary representation of Eτ,η(so₃). |
format |
Article |
author |
Manojlović, N. Nagy, Z. |
spellingShingle |
Manojlović, N. Nagy, Z. Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Manojlović, N. Nagy, Z. |
author_sort |
Manojlović, N. |
title |
Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group |
title_short |
Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group |
title_full |
Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group |
title_fullStr |
Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group |
title_full_unstemmed |
Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group |
title_sort |
construction of the bethe state for the eτ,η(so₃) elliptic quantum group |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147812 |
citation_txt |
Construction of the Bethe State for the Eτ,η(so₃) Elliptic Quantum Group / N. Manojlović, Z. Nagy // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 13 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT manojlovicn constructionofthebethestatefortheetēso3ellipticquantumgroup AT nagyz constructionofthebethestatefortheetēso3ellipticquantumgroup |
first_indexed |
2023-05-20T17:28:34Z |
last_indexed |
2023-05-20T17:28:34Z |
_version_ |
1796153390370127872 |