Towards Finite-Gap Integration of the Inozemtsev Model

The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Takemura, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147824
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147824
record_format dspace
spelling irk-123456789-1478242019-02-18T01:23:19Z Towards Finite-Gap Integration of the Inozemtsev Model Takemura, K. The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models. 2007 Article Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81R12; 33E10; 34M35 http://dspace.nbuv.gov.ua/handle/123456789/147824 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.
format Article
author Takemura, K.
spellingShingle Takemura, K.
Towards Finite-Gap Integration of the Inozemtsev Model
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Takemura, K.
author_sort Takemura, K.
title Towards Finite-Gap Integration of the Inozemtsev Model
title_short Towards Finite-Gap Integration of the Inozemtsev Model
title_full Towards Finite-Gap Integration of the Inozemtsev Model
title_fullStr Towards Finite-Gap Integration of the Inozemtsev Model
title_full_unstemmed Towards Finite-Gap Integration of the Inozemtsev Model
title_sort towards finite-gap integration of the inozemtsev model
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147824
citation_txt Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT takemurak towardsfinitegapintegrationoftheinozemtsevmodel
first_indexed 2023-05-20T17:28:36Z
last_indexed 2023-05-20T17:28:36Z
_version_ 1796153373192355840