Towards Finite-Gap Integration of the Inozemtsev Model
The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147824 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147824 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1478242019-02-18T01:23:19Z Towards Finite-Gap Integration of the Inozemtsev Model Takemura, K. The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models. 2007 Article Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81R12; 33E10; 34M35 http://dspace.nbuv.gov.ua/handle/123456789/147824 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models. |
format |
Article |
author |
Takemura, K. |
spellingShingle |
Takemura, K. Towards Finite-Gap Integration of the Inozemtsev Model Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Takemura, K. |
author_sort |
Takemura, K. |
title |
Towards Finite-Gap Integration of the Inozemtsev Model |
title_short |
Towards Finite-Gap Integration of the Inozemtsev Model |
title_full |
Towards Finite-Gap Integration of the Inozemtsev Model |
title_fullStr |
Towards Finite-Gap Integration of the Inozemtsev Model |
title_full_unstemmed |
Towards Finite-Gap Integration of the Inozemtsev Model |
title_sort |
towards finite-gap integration of the inozemtsev model |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147824 |
citation_txt |
Towards Finite-Gap Integration of the Inozemtsev Model / K. Takemura // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 49 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT takemurak towardsfinitegapintegrationoftheinozemtsevmodel |
first_indexed |
2023-05-20T17:28:36Z |
last_indexed |
2023-05-20T17:28:36Z |
_version_ |
1796153373192355840 |