Continuous and Discrete (Classical) Heisenberg Spin Chain Revised
Most of the work done in the past on the integrability structure of the Classical Heisenberg Spin Chain (CHSC) has been devoted to studying the su(2) case, both at the continuous and at the discrete level. In this paper we address the problem of constructing integrable generalized ''Spin C...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147831 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Continuous and Discrete (Classical) Heisenberg Spin Chain Revised / O. Ragnisco, F. Zullo // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Most of the work done in the past on the integrability structure of the Classical Heisenberg Spin Chain (CHSC) has been devoted to studying the su(2) case, both at the continuous and at the discrete level. In this paper we address the problem of constructing integrable generalized ''Spin Chains'' models, where the relevant field variable is represented by a N × N matrix whose eigenvalues are the Nth roots of unity. To the best of our knowledge, such an extension has never been systematically pursued. In this paper, at first we obtain the continuous N × N generalization of the CHSC through the reduction technique for Poisson-Nijenhuis manifolds, and exhibit some explicit, and hopefully interesting, examples for 3 × 3 and 4 × 4 matrices; then, we discuss the much more difficult discrete case, where a few partial new results are derived and a conjecture is made for the general case. |
---|