Elliptic Biorthogonal Polynomials Connected with Hermite's Continued Fraction
We study a family of the Laurent biorthogonal polynomials arising from the Hermite continued fraction for a ratio of two complete elliptic integrals. Recurrence coefficients, explicit expression and the weight function for these polynomials are obtained. We construct also a new explicit example of t...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147832 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Elliptic Biorthogonal Polynomials Connected with Hermite's Continued Fraction / L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We study a family of the Laurent biorthogonal polynomials arising from the Hermite continued fraction for a ratio of two complete elliptic integrals. Recurrence coefficients, explicit expression and the weight function for these polynomials are obtained. We construct also a new explicit example of the Szegö polynomials orthogonal on the unit circle. Relations with associated Legendre polynomials are considered. |
---|