Elliptic Biorthogonal Polynomials Connected with Hermite's Continued Fraction

We study a family of the Laurent biorthogonal polynomials arising from the Hermite continued fraction for a ratio of two complete elliptic integrals. Recurrence coefficients, explicit expression and the weight function for these polynomials are obtained. We construct also a new explicit example of t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Vinet, L., Zhedanov, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147832
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Elliptic Biorthogonal Polynomials Connected with Hermite's Continued Fraction / L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We study a family of the Laurent biorthogonal polynomials arising from the Hermite continued fraction for a ratio of two complete elliptic integrals. Recurrence coefficients, explicit expression and the weight function for these polynomials are obtained. We construct also a new explicit example of the Szegö polynomials orthogonal on the unit circle. Relations with associated Legendre polynomials are considered.