On Time Correlations for KPZ Growth in One Dimension

Time correlations for KPZ growth in 1+1 dimensions are reconsidered. We discuss flat, curved, and stationary initial conditions and are interested in the covariance of the height as a function of time at a fixed point on the substrate. In each case the power laws of the covariance for short and long...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Ferrari, P.L., Spohn, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147840
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Time Correlations for KPZ Growth in One Dimension / P.L. Ferrari, H. Spohn // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 50 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147840
record_format dspace
spelling irk-123456789-1478402019-02-17T01:24:49Z On Time Correlations for KPZ Growth in One Dimension Ferrari, P.L. Spohn, H. Time correlations for KPZ growth in 1+1 dimensions are reconsidered. We discuss flat, curved, and stationary initial conditions and are interested in the covariance of the height as a function of time at a fixed point on the substrate. In each case the power laws of the covariance for short and long times are obtained. They are derived from a variational problem involving two independent Airy processes. For stationary initial conditions we derive an exact formula for the stationary covariance with two approaches: (1) the variational problem and (2) deriving the covariance of the time-integrated current at the origin for the corresponding driven lattice gas. In the stationary case we also derive the large time behavior for the covariance of the height gradients. 2016 Article On Time Correlations for KPZ Growth in One Dimension / P.L. Ferrari, H. Spohn // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 50 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 60K35; 82C22; 82B43 DOI:10.3842/SIGMA.2016.074 http://dspace.nbuv.gov.ua/handle/123456789/147840 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Time correlations for KPZ growth in 1+1 dimensions are reconsidered. We discuss flat, curved, and stationary initial conditions and are interested in the covariance of the height as a function of time at a fixed point on the substrate. In each case the power laws of the covariance for short and long times are obtained. They are derived from a variational problem involving two independent Airy processes. For stationary initial conditions we derive an exact formula for the stationary covariance with two approaches: (1) the variational problem and (2) deriving the covariance of the time-integrated current at the origin for the corresponding driven lattice gas. In the stationary case we also derive the large time behavior for the covariance of the height gradients.
format Article
author Ferrari, P.L.
Spohn, H.
spellingShingle Ferrari, P.L.
Spohn, H.
On Time Correlations for KPZ Growth in One Dimension
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ferrari, P.L.
Spohn, H.
author_sort Ferrari, P.L.
title On Time Correlations for KPZ Growth in One Dimension
title_short On Time Correlations for KPZ Growth in One Dimension
title_full On Time Correlations for KPZ Growth in One Dimension
title_fullStr On Time Correlations for KPZ Growth in One Dimension
title_full_unstemmed On Time Correlations for KPZ Growth in One Dimension
title_sort on time correlations for kpz growth in one dimension
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147840
citation_txt On Time Correlations for KPZ Growth in One Dimension / P.L. Ferrari, H. Spohn // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 50 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ferraripl ontimecorrelationsforkpzgrowthinonedimension
AT spohnh ontimecorrelationsforkpzgrowthinonedimension
first_indexed 2023-05-20T17:28:38Z
last_indexed 2023-05-20T17:28:38Z
_version_ 1796153385191211008