Solvable Structures Associated to the Nonsolvable Symmetry Algebra sl(2,R)

Third-order ordinary differential equations with Lie symmetry algebras isomorphic to the nonsolvable algebra sl(2,R) admit solvable structures. These solvable structures can be constructed by using the basis elements of these algebras. Once the solvable structures are known, the given equation can b...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Ruiz, A., Muriel, C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147842
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Solvable Structures Associated to the Nonsolvable Symmetry Algebra sl(2,R) / A. Ruiz, C. Muriel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147842
record_format dspace
spelling irk-123456789-1478422019-02-17T01:27:27Z Solvable Structures Associated to the Nonsolvable Symmetry Algebra sl(2,R) Ruiz, A. Muriel, C. Third-order ordinary differential equations with Lie symmetry algebras isomorphic to the nonsolvable algebra sl(2,R) admit solvable structures. These solvable structures can be constructed by using the basis elements of these algebras. Once the solvable structures are known, the given equation can be integrated by quadratures as in the case of solvable symmetry algebras. 2016 Article Solvable Structures Associated to the Nonsolvable Symmetry Algebra sl(2,R) / A. Ruiz, C. Muriel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34A05; 34A26; 34C14 DOI:10.3842/SIGMA.2016.077 http://dspace.nbuv.gov.ua/handle/123456789/147842 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Third-order ordinary differential equations with Lie symmetry algebras isomorphic to the nonsolvable algebra sl(2,R) admit solvable structures. These solvable structures can be constructed by using the basis elements of these algebras. Once the solvable structures are known, the given equation can be integrated by quadratures as in the case of solvable symmetry algebras.
format Article
author Ruiz, A.
Muriel, C.
spellingShingle Ruiz, A.
Muriel, C.
Solvable Structures Associated to the Nonsolvable Symmetry Algebra sl(2,R)
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ruiz, A.
Muriel, C.
author_sort Ruiz, A.
title Solvable Structures Associated to the Nonsolvable Symmetry Algebra sl(2,R)
title_short Solvable Structures Associated to the Nonsolvable Symmetry Algebra sl(2,R)
title_full Solvable Structures Associated to the Nonsolvable Symmetry Algebra sl(2,R)
title_fullStr Solvable Structures Associated to the Nonsolvable Symmetry Algebra sl(2,R)
title_full_unstemmed Solvable Structures Associated to the Nonsolvable Symmetry Algebra sl(2,R)
title_sort solvable structures associated to the nonsolvable symmetry algebra sl(2,r)
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147842
citation_txt Solvable Structures Associated to the Nonsolvable Symmetry Algebra sl(2,R) / A. Ruiz, C. Muriel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 31 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ruiza solvablestructuresassociatedtothenonsolvablesymmetryalgebrasl2r
AT murielc solvablestructuresassociatedtothenonsolvablesymmetryalgebrasl2r
first_indexed 2023-05-20T17:28:39Z
last_indexed 2023-05-20T17:28:39Z
_version_ 1796153385401974784