A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres

We consider Poisson's equation on the n-dimensional sphere in the situation where the inhomogeneous term has zero integral. Using a number of classical and modern hypergeometric identities, we integrate this equation to produce the form of the fundamental solutions for any number of dimensions...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Chapling, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147845
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres / R. Chapling // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147845
record_format dspace
spelling irk-123456789-1478452019-02-17T01:27:47Z A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres Chapling, R. We consider Poisson's equation on the n-dimensional sphere in the situation where the inhomogeneous term has zero integral. Using a number of classical and modern hypergeometric identities, we integrate this equation to produce the form of the fundamental solutions for any number of dimensions in terms of generalised hypergeometric functions, with different closed forms for even and odd-dimensional cases. 2016 Article A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres / R. Chapling // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35A08; 35J05; 31C12; 33C05; 33C20 DOI:10.3842/SIGMA.2016.079 http://dspace.nbuv.gov.ua/handle/123456789/147845 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider Poisson's equation on the n-dimensional sphere in the situation where the inhomogeneous term has zero integral. Using a number of classical and modern hypergeometric identities, we integrate this equation to produce the form of the fundamental solutions for any number of dimensions in terms of generalised hypergeometric functions, with different closed forms for even and odd-dimensional cases.
format Article
author Chapling, R.
spellingShingle Chapling, R.
A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Chapling, R.
author_sort Chapling, R.
title A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres
title_short A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres
title_full A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres
title_fullStr A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres
title_full_unstemmed A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres
title_sort hypergeometric integral with applications to the fundamental solution of laplace's equation on hyperspheres
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147845
citation_txt A Hypergeometric Integral with Applications to the Fundamental Solution of Laplace's Equation on Hyperspheres / R. Chapling // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT chaplingr ahypergeometricintegralwithapplicationstothefundamentalsolutionoflaplacesequationonhyperspheres
AT chaplingr hypergeometricintegralwithapplicationstothefundamentalsolutionoflaplacesequationonhyperspheres
first_indexed 2023-05-20T17:28:39Z
last_indexed 2023-05-20T17:28:39Z
_version_ 1796153385717596160