On Jacobi Inversion Formulae for Telescopic Curves

For a hyperelliptic curve of genus g, it is well known that the symmetric products of g points on the curve are expressed in terms of their Abel-Jacobi image by the hyperelliptic sigma function (Jacobi inversion formulae). Matsutani and Previato gave a natural generalization of the formulae to the m...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Ayano, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147847
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Jacobi Inversion Formulae for Telescopic Curves / A. Ayano // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:For a hyperelliptic curve of genus g, it is well known that the symmetric products of g points on the curve are expressed in terms of their Abel-Jacobi image by the hyperelliptic sigma function (Jacobi inversion formulae). Matsutani and Previato gave a natural generalization of the formulae to the more general algebraic curves defined by yr=f(x), which are special cases of (n,s) curves, and derived new vanishing properties of the sigma function of the curves yr=f(x). In this paper we extend the formulae to the telescopic curves proposed by Miura and derive new vanishing properties of the sigma function of telescopic curves. The telescopic curves contain the (n,s) curves as special cases.