Born-Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator

We apply the Born-Jordan and Weyl quantization formulas for polynomials in canonical coordinates to the constants of motion of some examples of the superintegrable 2D anisotropic harmonic oscillator. Our aim is to study the behaviour of the algebra of the constants of motion after the different quan...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Rastelli, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147848
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Born-Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator / G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We apply the Born-Jordan and Weyl quantization formulas for polynomials in canonical coordinates to the constants of motion of some examples of the superintegrable 2D anisotropic harmonic oscillator. Our aim is to study the behaviour of the algebra of the constants of motion after the different quantization procedures. In the examples considered, we have that the Weyl formula always preserves the original superintegrable structure of the system, while the Born-Jordan formula, when producing different operators than the Weyl's one, does not.