A Duflo Star Product for Poisson Groups

Let G be a finite-dimensional Poisson algebraic, Lie or formal group. We show that the center of the quantization of G provided by an Etingof-Kazhdan functor is isomorphic as an algebra to the Poisson center of the algebra of functions on G. This recovers and generalizes Duflo's theorem which g...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Brochier, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147854
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Duflo Star Product for Poisson Groups / A. Brochier // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147854
record_format dspace
spelling irk-123456789-1478542019-02-17T01:28:00Z A Duflo Star Product for Poisson Groups Brochier, A. Let G be a finite-dimensional Poisson algebraic, Lie or formal group. We show that the center of the quantization of G provided by an Etingof-Kazhdan functor is isomorphic as an algebra to the Poisson center of the algebra of functions on G. This recovers and generalizes Duflo's theorem which gives an isomorphism between the center of the enveloping algebra of a finite-dimensional Lie algebra a and the subalgebra of ad-invariant in the symmetric algebra of a. As our proof relies on Etingof-Kazhdan construction it ultimately depends on the existence of Drinfeld associators, but otherwise it is a fairly simple application of graphical calculus. This shed some lights on Alekseev-Torossian proof of the Kashiwara-Vergne conjecture, and on the relation observed by Bar-Natan-Le-Thurston between the Duflo isomorphism and the Kontsevich integral of the unknot. 2016 Article A Duflo Star Product for Poisson Groups / A. Brochier // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 20G42; 17B37; 53D55 DOI:10.3842/SIGMA.2016.088 http://dspace.nbuv.gov.ua/handle/123456789/147854 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let G be a finite-dimensional Poisson algebraic, Lie or formal group. We show that the center of the quantization of G provided by an Etingof-Kazhdan functor is isomorphic as an algebra to the Poisson center of the algebra of functions on G. This recovers and generalizes Duflo's theorem which gives an isomorphism between the center of the enveloping algebra of a finite-dimensional Lie algebra a and the subalgebra of ad-invariant in the symmetric algebra of a. As our proof relies on Etingof-Kazhdan construction it ultimately depends on the existence of Drinfeld associators, but otherwise it is a fairly simple application of graphical calculus. This shed some lights on Alekseev-Torossian proof of the Kashiwara-Vergne conjecture, and on the relation observed by Bar-Natan-Le-Thurston between the Duflo isomorphism and the Kontsevich integral of the unknot.
format Article
author Brochier, A.
spellingShingle Brochier, A.
A Duflo Star Product for Poisson Groups
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Brochier, A.
author_sort Brochier, A.
title A Duflo Star Product for Poisson Groups
title_short A Duflo Star Product for Poisson Groups
title_full A Duflo Star Product for Poisson Groups
title_fullStr A Duflo Star Product for Poisson Groups
title_full_unstemmed A Duflo Star Product for Poisson Groups
title_sort duflo star product for poisson groups
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147854
citation_txt A Duflo Star Product for Poisson Groups / A. Brochier // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT brochiera aduflostarproductforpoissongroups
AT brochiera duflostarproductforpoissongroups
first_indexed 2023-05-20T17:28:41Z
last_indexed 2023-05-20T17:28:41Z
_version_ 1796153386665508864