The Index of Dirac Operators on Incomplete Edge Spaces

We derive a formula for the index of a Dirac operator on a compact, even-dimensional incomplete edge space satisfying a ''geometric Witt condition''. We accomplish this by cutting off to a smooth manifold with boundary, applying the Atiyah-Patodi-Singer index theorem, and taking...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Albin, P., Gell-Redman, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147856
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Index of Dirac Operators on Incomplete Edge Spaces / P. Albin, J. Gell-Redman // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 62 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147856
record_format dspace
spelling irk-123456789-1478562019-02-17T01:27:38Z The Index of Dirac Operators on Incomplete Edge Spaces Albin, P. Gell-Redman, J. We derive a formula for the index of a Dirac operator on a compact, even-dimensional incomplete edge space satisfying a ''geometric Witt condition''. We accomplish this by cutting off to a smooth manifold with boundary, applying the Atiyah-Patodi-Singer index theorem, and taking a limit. We deduce corollaries related to the existence of positive scalar curvature metrics on incomplete edge spaces. 2016 Article The Index of Dirac Operators on Incomplete Edge Spaces / P. Albin, J. Gell-Redman // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 62 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58G10; 58A35; 58G05 DOI:10.3842/SIGMA.2016.089 http://dspace.nbuv.gov.ua/handle/123456789/147856 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We derive a formula for the index of a Dirac operator on a compact, even-dimensional incomplete edge space satisfying a ''geometric Witt condition''. We accomplish this by cutting off to a smooth manifold with boundary, applying the Atiyah-Patodi-Singer index theorem, and taking a limit. We deduce corollaries related to the existence of positive scalar curvature metrics on incomplete edge spaces.
format Article
author Albin, P.
Gell-Redman, J.
spellingShingle Albin, P.
Gell-Redman, J.
The Index of Dirac Operators on Incomplete Edge Spaces
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Albin, P.
Gell-Redman, J.
author_sort Albin, P.
title The Index of Dirac Operators on Incomplete Edge Spaces
title_short The Index of Dirac Operators on Incomplete Edge Spaces
title_full The Index of Dirac Operators on Incomplete Edge Spaces
title_fullStr The Index of Dirac Operators on Incomplete Edge Spaces
title_full_unstemmed The Index of Dirac Operators on Incomplete Edge Spaces
title_sort index of dirac operators on incomplete edge spaces
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147856
citation_txt The Index of Dirac Operators on Incomplete Edge Spaces / P. Albin, J. Gell-Redman // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 62 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT albinp theindexofdiracoperatorsonincompleteedgespaces
AT gellredmanj theindexofdiracoperatorsonincompleteedgespaces
AT albinp indexofdiracoperatorsonincompleteedgespaces
AT gellredmanj indexofdiracoperatorsonincompleteedgespaces
first_indexed 2023-05-20T17:28:41Z
last_indexed 2023-05-20T17:28:41Z
_version_ 1796153386772463616