On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings

We study several fundamental harmonic analysis operators in the multi-dimensional context of the Dunkl harmonic oscillator and the underlying group of reflections isomorphic to Zd2. Noteworthy, we admit negative values of the multiplicity functions. Our investigations include maximal operators, g-fu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Nowak, A., Stempak, K., Szarek, T.Z.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147861
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Harmonic Analysis Operators in Laguerre-Dunkl and Laguerre-Symmetrized Settings / A. Nowak, K. Stempak, T.Z. Szarek // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 46 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We study several fundamental harmonic analysis operators in the multi-dimensional context of the Dunkl harmonic oscillator and the underlying group of reflections isomorphic to Zd2. Noteworthy, we admit negative values of the multiplicity functions. Our investigations include maximal operators, g-functions, Lusin area integrals, Riesz transforms and multipliers of Laplace and Laplace-Stieltjes type. By means of the general Calderón-Zygmund theory we prove that these operators are bounded on weighted Lp spaces, 1 < p < ∞, and from weighted L1 to weighted weak L1. We also obtain similar results for analogous set of operators in the closely related multi-dimensional Laguerre-symmetrized framework. The latter emerges from a symmetrization procedure proposed recently by the first two authors. As a by-product of the main developments we get some new results in the multi-dimensional Laguerre function setting of convolution type.