Fixed Point Algebras for Easy Quantum Groups

Compact matrix quantum groups act naturally on Cuntz algebras. The first author isolated certain conditions under which the fixed point algebras under this action are Kirchberg algebras. Hence they are completely determined by their K-groups. Building on prior work by the second author, we prove tha...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Gabriel, O., Weber, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147862
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fixed Point Algebras for Easy Quantum Groups / O. Gabriel, M. Weber // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147862
record_format dspace
spelling irk-123456789-1478622019-02-17T01:23:17Z Fixed Point Algebras for Easy Quantum Groups Gabriel, O. Weber, M. Compact matrix quantum groups act naturally on Cuntz algebras. The first author isolated certain conditions under which the fixed point algebras under this action are Kirchberg algebras. Hence they are completely determined by their K-groups. Building on prior work by the second author, we prove that free easy quantum groups satisfy these conditions and we compute the K-groups of their fixed point algebras in a general form. We then turn to examples such as the quantum permutation group Sn⁺, the free orthogonal quantum group On⁺ and the quantum reflection groups Hns⁺. Our fixed point-algebra construction provides concrete examples of free actions of free orthogonal easy quantum groups, which are related to Hopf-Galois extensions. 2016 Article Fixed Point Algebras for Easy Quantum Groups / O. Gabriel, M. Weber // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 46L80; 19K99; 81R50 DOI:10.3842/SIGMA.2016.097 http://dspace.nbuv.gov.ua/handle/123456789/147862 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Compact matrix quantum groups act naturally on Cuntz algebras. The first author isolated certain conditions under which the fixed point algebras under this action are Kirchberg algebras. Hence they are completely determined by their K-groups. Building on prior work by the second author, we prove that free easy quantum groups satisfy these conditions and we compute the K-groups of their fixed point algebras in a general form. We then turn to examples such as the quantum permutation group Sn⁺, the free orthogonal quantum group On⁺ and the quantum reflection groups Hns⁺. Our fixed point-algebra construction provides concrete examples of free actions of free orthogonal easy quantum groups, which are related to Hopf-Galois extensions.
format Article
author Gabriel, O.
Weber, M.
spellingShingle Gabriel, O.
Weber, M.
Fixed Point Algebras for Easy Quantum Groups
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Gabriel, O.
Weber, M.
author_sort Gabriel, O.
title Fixed Point Algebras for Easy Quantum Groups
title_short Fixed Point Algebras for Easy Quantum Groups
title_full Fixed Point Algebras for Easy Quantum Groups
title_fullStr Fixed Point Algebras for Easy Quantum Groups
title_full_unstemmed Fixed Point Algebras for Easy Quantum Groups
title_sort fixed point algebras for easy quantum groups
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/147862
citation_txt Fixed Point Algebras for Easy Quantum Groups / O. Gabriel, M. Weber // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 44 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT gabrielo fixedpointalgebrasforeasyquantumgroups
AT weberm fixedpointalgebrasforeasyquantumgroups
first_indexed 2023-05-20T17:28:42Z
last_indexed 2023-05-20T17:28:42Z
_version_ 1796153391424995328