Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems
Using the concept of variational tricomplex endowed with a presymplectic structure, we formulate the general notion of symmetry. We show that each generalized symmetry of a gauge system gives rise to a sequence of conservation laws that are represented by on-shell closed forms of various degrees. Th...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147863 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems / A.A. Sharapov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 35 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147863 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1478632019-02-17T01:23:19Z Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems Sharapov, A.A. Using the concept of variational tricomplex endowed with a presymplectic structure, we formulate the general notion of symmetry. We show that each generalized symmetry of a gauge system gives rise to a sequence of conservation laws that are represented by on-shell closed forms of various degrees. This extends the usual Noether's correspondence between global symmetries and conservation laws to the case of lower-degree conservation laws and not necessarily variational equations of motion. Finally, we equip the space of conservation laws of a given degree with a Lie bracket and establish a homomorphism of the resulting Lie algebra to the Lie algebra of global symmetries. 2016 Article Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems / A.A. Sharapov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 35 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70S10; 81T70; 83C40 DOI:10.3842/SIGMA.2016.098 http://dspace.nbuv.gov.ua/handle/123456789/147863 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Using the concept of variational tricomplex endowed with a presymplectic structure, we formulate the general notion of symmetry. We show that each generalized symmetry of a gauge system gives rise to a sequence of conservation laws that are represented by on-shell closed forms of various degrees. This extends the usual Noether's correspondence between global symmetries and conservation laws to the case of lower-degree conservation laws and not necessarily variational equations of motion. Finally, we equip the space of conservation laws of a given degree with a Lie bracket and establish a homomorphism of the resulting Lie algebra to the Lie algebra of global symmetries. |
format |
Article |
author |
Sharapov, A.A. |
spellingShingle |
Sharapov, A.A. Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Sharapov, A.A. |
author_sort |
Sharapov, A.A. |
title |
Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems |
title_short |
Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems |
title_full |
Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems |
title_fullStr |
Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems |
title_full_unstemmed |
Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems |
title_sort |
variational tricomplex, global symmetries and conservation laws of gauge systems |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147863 |
citation_txt |
Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems / A.A. Sharapov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 35 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT sharapovaa variationaltricomplexglobalsymmetriesandconservationlawsofgaugesystems |
first_indexed |
2023-05-20T17:28:42Z |
last_indexed |
2023-05-20T17:28:42Z |
_version_ |
1796153391531950080 |