The Universal Askey-Wilson Algebra and the Equitable Presentation of Uq(sl₂)
Around 1992 A. Zhedanov introduced the Askey-Wilson algebra AW(3). Recently we introduced a central extension Δ of AW(3) called the universal Askey-Wilson algebra. In this paper we discuss a connection between Δ and the quantum algebra Uq(sl₂). Our main result is an algebra injection from Δ into a r...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147989 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The Universal Askey-Wilson Algebra and the Equitable Presentation of Uq(sl₂) / P. Terwilliger // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147989 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1479892019-02-17T01:24:37Z The Universal Askey-Wilson Algebra and the Equitable Presentation of Uq(sl₂) Terwilliger, P. Around 1992 A. Zhedanov introduced the Askey-Wilson algebra AW(3). Recently we introduced a central extension Δ of AW(3) called the universal Askey-Wilson algebra. In this paper we discuss a connection between Δ and the quantum algebra Uq(sl₂). Our main result is an algebra injection from Δ into a relative of Uq(sl₂); the relative is obtained from Uq(sl₂) by adjoining three mutually commuting indeterminates. We describe the injection using the equitable presentation of Uq(sl₂). 2011 Article The Universal Askey-Wilson Algebra and the Equitable Presentation of Uq(sl₂) / P. Terwilliger // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D80; 33D45 http://dx.doi.org/10.3842/SIGMA.2011.099 http://dspace.nbuv.gov.ua/handle/123456789/147989 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Around 1992 A. Zhedanov introduced the Askey-Wilson algebra AW(3). Recently we introduced a central extension Δ of AW(3) called the universal Askey-Wilson algebra. In this paper we discuss a connection between Δ and the quantum algebra Uq(sl₂). Our main result is an algebra injection from Δ into a relative of Uq(sl₂); the relative is obtained from Uq(sl₂) by adjoining three mutually commuting indeterminates. We describe the injection using the equitable presentation of Uq(sl₂). |
format |
Article |
author |
Terwilliger, P. |
spellingShingle |
Terwilliger, P. The Universal Askey-Wilson Algebra and the Equitable Presentation of Uq(sl₂) Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Terwilliger, P. |
author_sort |
Terwilliger, P. |
title |
The Universal Askey-Wilson Algebra and the Equitable Presentation of Uq(sl₂) |
title_short |
The Universal Askey-Wilson Algebra and the Equitable Presentation of Uq(sl₂) |
title_full |
The Universal Askey-Wilson Algebra and the Equitable Presentation of Uq(sl₂) |
title_fullStr |
The Universal Askey-Wilson Algebra and the Equitable Presentation of Uq(sl₂) |
title_full_unstemmed |
The Universal Askey-Wilson Algebra and the Equitable Presentation of Uq(sl₂) |
title_sort |
universal askey-wilson algebra and the equitable presentation of uq(sl₂) |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147989 |
citation_txt |
The Universal Askey-Wilson Algebra and the Equitable Presentation of Uq(sl₂) / P. Terwilliger // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT terwilligerp theuniversalaskeywilsonalgebraandtheequitablepresentationofuqsl2 AT terwilligerp universalaskeywilsonalgebraandtheequitablepresentationofuqsl2 |
first_indexed |
2023-05-20T17:28:20Z |
last_indexed |
2023-05-20T17:28:20Z |
_version_ |
1796153367568842752 |