Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses
S⁴ is not a complex manifold, but it is sufficient to remove one point to make it complex. Using supersymmetry methods, we show that the Dolbeault complex (involving the holomorphic exterior derivative ∂ and its Hermitian conjugate) can be perfectly well defined in this case. We calculate the spectr...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147990 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147990 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1479902019-02-17T01:24:20Z Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses Smilga, A.V. S⁴ is not a complex manifold, but it is sufficient to remove one point to make it complex. Using supersymmetry methods, we show that the Dolbeault complex (involving the holomorphic exterior derivative ∂ and its Hermitian conjugate) can be perfectly well defined in this case. We calculate the spectrum of the Dolbeault Laplacian. It involves 3 bosonic zero modes such that the Dolbeault index on S⁴\{·} is equal to 3. 2011 Article Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 32C15; 53B35; 53Z05 http://dx.doi.org/10.3842/SIGMA.2011.105 http://dspace.nbuv.gov.ua/handle/123456789/147990 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
S⁴ is not a complex manifold, but it is sufficient to remove one point to make it complex. Using supersymmetry methods, we show that the Dolbeault complex (involving the holomorphic exterior derivative ∂ and its Hermitian conjugate) can be perfectly well defined in this case. We calculate the spectrum of the Dolbeault Laplacian. It involves 3 bosonic zero modes such that the Dolbeault index on S⁴\{·} is equal to 3. |
format |
Article |
author |
Smilga, A.V. |
spellingShingle |
Smilga, A.V. Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Smilga, A.V. |
author_sort |
Smilga, A.V. |
title |
Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses |
title_short |
Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses |
title_full |
Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses |
title_fullStr |
Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses |
title_full_unstemmed |
Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses |
title_sort |
dolbeault complex on s⁴\{·} and s⁶\{·} through supersymmetric glasses |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147990 |
citation_txt |
Dolbeault Complex on S⁴\{·} and S⁶\{·} through Supersymmetric Glasses / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT smilgaav dolbeaultcomplexons4ands6throughsupersymmetricglasses |
first_indexed |
2023-05-20T17:28:20Z |
last_indexed |
2023-05-20T17:28:20Z |
_version_ |
1796153378314649600 |