A Relativistic Conical Function and its Whittaker Limits

In previous work we introduced and studied a function R(a+,a−,c;v,v^) that is a generalization of the hypergeometric function ₂F₁ and the Askey-Wilson polynomials. When the coupling vector c∈C⁴ is specialized to (b,0,0,0), b∈C, we obtain a function R(a+,a−,b;v,2v^) that generalizes the conical funct...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Ruijsenaars, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147993
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Relativistic Conical Function and its Whittaker Limits / S. Ruijsenaars // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 43 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147993
record_format dspace
spelling irk-123456789-1479932019-02-17T01:23:24Z A Relativistic Conical Function and its Whittaker Limits Ruijsenaars, S. In previous work we introduced and studied a function R(a+,a−,c;v,v^) that is a generalization of the hypergeometric function ₂F₁ and the Askey-Wilson polynomials. When the coupling vector c∈C⁴ is specialized to (b,0,0,0), b∈C, we obtain a function R(a+,a−,b;v,2v^) that generalizes the conical function specialization of ₂F₁ and the q-Gegenbauer polynomials. The function R is the joint eigenfunction of four analytic difference operators associated with the relativistic Calogero-Moser system of A₁ type, whereas the function R corresponds to BC₁, and is the joint eigenfunction of four hyperbolic Askey-Wilson type difference operators. We show that the R-function admits five novel integral representations that involve only four hyperbolic gamma functions and plane waves. Taking their nonrelativistic limit, we arrive at four representations of the conical function. We also show that a limit procedure leads to two commuting relativistic Toda Hamiltonians and two commuting dual Toda Hamiltonians, and that a similarity transform of the function R converges to a joint eigenfunction of the latter four difference operators. 2011 Article A Relativistic Conical Function and its Whittaker Limits / S. Ruijsenaars // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 43 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C05; 33E30; 39A10; 81Q05; 81Q80 http://dx.doi.org/10.3842/SIGMA.2011.101 http://dspace.nbuv.gov.ua/handle/123456789/147993 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In previous work we introduced and studied a function R(a+,a−,c;v,v^) that is a generalization of the hypergeometric function ₂F₁ and the Askey-Wilson polynomials. When the coupling vector c∈C⁴ is specialized to (b,0,0,0), b∈C, we obtain a function R(a+,a−,b;v,2v^) that generalizes the conical function specialization of ₂F₁ and the q-Gegenbauer polynomials. The function R is the joint eigenfunction of four analytic difference operators associated with the relativistic Calogero-Moser system of A₁ type, whereas the function R corresponds to BC₁, and is the joint eigenfunction of four hyperbolic Askey-Wilson type difference operators. We show that the R-function admits five novel integral representations that involve only four hyperbolic gamma functions and plane waves. Taking their nonrelativistic limit, we arrive at four representations of the conical function. We also show that a limit procedure leads to two commuting relativistic Toda Hamiltonians and two commuting dual Toda Hamiltonians, and that a similarity transform of the function R converges to a joint eigenfunction of the latter four difference operators.
format Article
author Ruijsenaars, S.
spellingShingle Ruijsenaars, S.
A Relativistic Conical Function and its Whittaker Limits
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ruijsenaars, S.
author_sort Ruijsenaars, S.
title A Relativistic Conical Function and its Whittaker Limits
title_short A Relativistic Conical Function and its Whittaker Limits
title_full A Relativistic Conical Function and its Whittaker Limits
title_fullStr A Relativistic Conical Function and its Whittaker Limits
title_full_unstemmed A Relativistic Conical Function and its Whittaker Limits
title_sort relativistic conical function and its whittaker limits
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147993
citation_txt A Relativistic Conical Function and its Whittaker Limits / S. Ruijsenaars // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 43 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ruijsenaarss arelativisticconicalfunctionanditswhittakerlimits
AT ruijsenaarss relativisticconicalfunctionanditswhittakerlimits
first_indexed 2023-05-20T17:28:21Z
last_indexed 2023-05-20T17:28:21Z
_version_ 1796153367780655104