Strictly Positive Definite Kernels on a Product of Spheres II

We present, among other things, a necessary and sufficient condition for the strict positive definiteness of an isotropic and positive definite kernel on the cartesian product of a circle and a higher dimensional sphere. The result complements similar results previously obtained for strict positive...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Guella, J.C., Menegatto, V.A., Peron, A.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148004
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Strictly Positive Definite Kernels on a Product of Spheres II / J.C. Guella, V.A. Menegatto, A.P. Peron // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148004
record_format dspace
spelling irk-123456789-1480042019-02-17T01:25:56Z Strictly Positive Definite Kernels on a Product of Spheres II Guella, J.C. Menegatto, V.A. Peron, A.P. We present, among other things, a necessary and sufficient condition for the strict positive definiteness of an isotropic and positive definite kernel on the cartesian product of a circle and a higher dimensional sphere. The result complements similar results previously obtained for strict positive definiteness on a product of circles [Positivity, to appear, arXiv:1505.01169] and on a product of high dimensional spheres [J. Math. Anal. Appl. 435 (2016), 286-301, arXiv:1505.03695]. 2016 Article Strictly Positive Definite Kernels on a Product of Spheres II / J.C. Guella, V.A. Menegatto, A.P. Peron // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C50; 33C55; 42A16; 42A82; 42C10; 43A35 DOI:10.3842/SIGMA.2016.103 http://dspace.nbuv.gov.ua/handle/123456789/148004 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present, among other things, a necessary and sufficient condition for the strict positive definiteness of an isotropic and positive definite kernel on the cartesian product of a circle and a higher dimensional sphere. The result complements similar results previously obtained for strict positive definiteness on a product of circles [Positivity, to appear, arXiv:1505.01169] and on a product of high dimensional spheres [J. Math. Anal. Appl. 435 (2016), 286-301, arXiv:1505.03695].
format Article
author Guella, J.C.
Menegatto, V.A.
Peron, A.P.
spellingShingle Guella, J.C.
Menegatto, V.A.
Peron, A.P.
Strictly Positive Definite Kernels on a Product of Spheres II
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Guella, J.C.
Menegatto, V.A.
Peron, A.P.
author_sort Guella, J.C.
title Strictly Positive Definite Kernels on a Product of Spheres II
title_short Strictly Positive Definite Kernels on a Product of Spheres II
title_full Strictly Positive Definite Kernels on a Product of Spheres II
title_fullStr Strictly Positive Definite Kernels on a Product of Spheres II
title_full_unstemmed Strictly Positive Definite Kernels on a Product of Spheres II
title_sort strictly positive definite kernels on a product of spheres ii
publisher Інститут математики НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/148004
citation_txt Strictly Positive Definite Kernels on a Product of Spheres II / J.C. Guella, V.A. Menegatto, A.P. Peron // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT guellajc strictlypositivedefinitekernelsonaproductofspheresii
AT menegattova strictlypositivedefinitekernelsonaproductofspheresii
AT peronap strictlypositivedefinitekernelsonaproductofspheresii
first_indexed 2023-05-20T17:29:00Z
last_indexed 2023-05-20T17:29:00Z
_version_ 1796153397294923776