Strictly Positive Definite Kernels on a Product of Spheres II
We present, among other things, a necessary and sufficient condition for the strict positive definiteness of an isotropic and positive definite kernel on the cartesian product of a circle and a higher dimensional sphere. The result complements similar results previously obtained for strict positive...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2016
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148004 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Strictly Positive Definite Kernels on a Product of Spheres II / J.C. Guella, V.A. Menegatto, A.P. Peron // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148004 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1480042019-02-17T01:25:56Z Strictly Positive Definite Kernels on a Product of Spheres II Guella, J.C. Menegatto, V.A. Peron, A.P. We present, among other things, a necessary and sufficient condition for the strict positive definiteness of an isotropic and positive definite kernel on the cartesian product of a circle and a higher dimensional sphere. The result complements similar results previously obtained for strict positive definiteness on a product of circles [Positivity, to appear, arXiv:1505.01169] and on a product of high dimensional spheres [J. Math. Anal. Appl. 435 (2016), 286-301, arXiv:1505.03695]. 2016 Article Strictly Positive Definite Kernels on a Product of Spheres II / J.C. Guella, V.A. Menegatto, A.P. Peron // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C50; 33C55; 42A16; 42A82; 42C10; 43A35 DOI:10.3842/SIGMA.2016.103 http://dspace.nbuv.gov.ua/handle/123456789/148004 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We present, among other things, a necessary and sufficient condition for the strict positive definiteness of an isotropic and positive definite kernel on the cartesian product of a circle and a higher dimensional sphere. The result complements similar results previously obtained for strict positive definiteness on a product of circles [Positivity, to appear, arXiv:1505.01169] and on a product of high dimensional spheres [J. Math. Anal. Appl. 435 (2016), 286-301, arXiv:1505.03695]. |
format |
Article |
author |
Guella, J.C. Menegatto, V.A. Peron, A.P. |
spellingShingle |
Guella, J.C. Menegatto, V.A. Peron, A.P. Strictly Positive Definite Kernels on a Product of Spheres II Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Guella, J.C. Menegatto, V.A. Peron, A.P. |
author_sort |
Guella, J.C. |
title |
Strictly Positive Definite Kernels on a Product of Spheres II |
title_short |
Strictly Positive Definite Kernels on a Product of Spheres II |
title_full |
Strictly Positive Definite Kernels on a Product of Spheres II |
title_fullStr |
Strictly Positive Definite Kernels on a Product of Spheres II |
title_full_unstemmed |
Strictly Positive Definite Kernels on a Product of Spheres II |
title_sort |
strictly positive definite kernels on a product of spheres ii |
publisher |
Інститут математики НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148004 |
citation_txt |
Strictly Positive Definite Kernels on a Product of Spheres II / J.C. Guella, V.A. Menegatto, A.P. Peron // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT guellajc strictlypositivedefinitekernelsonaproductofspheresii AT menegattova strictlypositivedefinitekernelsonaproductofspheresii AT peronap strictlypositivedefinitekernelsonaproductofspheresii |
first_indexed |
2023-05-20T17:29:00Z |
last_indexed |
2023-05-20T17:29:00Z |
_version_ |
1796153397294923776 |