Continuous Choreographies as Limiting Solutions of N-body Type Problems with Weak Interaction

We consider the limit N→+∞ of N-body type problems with weak interaction, equal masses and −σ-homogeneous potential, 0<σ<1. We obtain the integro-differential equation that the motions must satisfy, with limit choreographic solutions corresponding to travelling waves of this equation. Such equ...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Castaneira, R., Padilla, P., Sánchez-Morgado, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2016
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148005
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Continuous Choreographies as Limiting Solutions of N-body Type Problems with Weak Interaction / R. Castaneira, P. Padilla, H. Sánchez-Morgado // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider the limit N→+∞ of N-body type problems with weak interaction, equal masses and −σ-homogeneous potential, 0<σ<1. We obtain the integro-differential equation that the motions must satisfy, with limit choreographic solutions corresponding to travelling waves of this equation. Such equation is the Euler-Lagrange equation of a corresponding limiting action functional. Our main result is that the circle is the absolute minimizer of the action functional among zero mean (travelling wave) loops of class H¹.