Classification of Surface EMG Using Wavelet Packet Energy Analysis and a Genetic Algorithm-Based Support Vector Machine

The aim of our study was to recognize results of surface electromyography (sEMG) recorded under conditions of a maximum voluntary contraction (MVС) and fatigue states using wavelet packet transform and energy analysis. The sEMG signals were recorded in 10 young men from the right upper limb with a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Rong, Y., Hao, D., Han, X., Zhang, Y., Zhang, J., Zeng, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізіології ім. О.О. Богомольця НАН України 2013
Назва видання:Нейрофизиология
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148026
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Classification of Surface EMG Using Wavelet Packet Energy Analysis and a Genetic Algorithm-Based Support Vector Machine / Y. Rong, D. Hao, X. Han, Y. Zhang, J. Zhang, Y. Zeng // Нейрофизиология. — 2013. — Т. 45, № 1. — С. 44-54. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The aim of our study was to recognize results of surface electromyography (sEMG) recorded under conditions of a maximum voluntary contraction (MVС) and fatigue states using wavelet packet transform and energy analysis. The sEMG signals were recorded in 10 young men from the right upper limb with a handgrip. sEMG signals were decomposed by wavelet packet transform, and the corresponding energies of certain frequencies were normalized as feature vectors. A back-propagation neural network, a support vector machine (SVM), and a genetic algorithm-based SVM (GA-SVM) worked as classifiers to distinguish muscle states. The results showed that muscle fatigue and MVC could be identified by level-4 wavelet packet transform and GA-SVM more accurately than when using other approaches. The classification correct rate reached 97.3% with sevenfold cross-validation. The proposed method can be used to adequately reflect the muscle activity.