Dunkl Hyperbolic Equations
We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148077 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Dunkl Hyperbolic Equations / H. Mejjaoli // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 34 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148077 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1480772019-02-17T01:26:23Z Dunkl Hyperbolic Equations Mejjaoli, H. We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied. 2008 Article Dunkl Hyperbolic Equations / H. Mejjaoli // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 34 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35L05; 22E30 http://dspace.nbuv.gov.ua/handle/123456789/148077 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied. |
format |
Article |
author |
Mejjaoli, H. |
spellingShingle |
Mejjaoli, H. Dunkl Hyperbolic Equations Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Mejjaoli, H. |
author_sort |
Mejjaoli, H. |
title |
Dunkl Hyperbolic Equations |
title_short |
Dunkl Hyperbolic Equations |
title_full |
Dunkl Hyperbolic Equations |
title_fullStr |
Dunkl Hyperbolic Equations |
title_full_unstemmed |
Dunkl Hyperbolic Equations |
title_sort |
dunkl hyperbolic equations |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148077 |
citation_txt |
Dunkl Hyperbolic Equations / H. Mejjaoli // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 34 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT mejjaolih dunklhyperbolicequations |
first_indexed |
2023-05-20T17:29:11Z |
last_indexed |
2023-05-20T17:29:11Z |
_version_ |
1796153405612228608 |