A Limit Relation for Dunkl-Bessel Functions of Type A and B
We prove a limit relation for the Dunkl-Bessel function of type BN with multiplicity parameters k₁ on the roots ±ei and k₂ on ±ei±ej where k₁ tends to infinity and the arguments are suitably scaled. It gives a good approximation in terms of the Dunkl-type Bessel function of type An₋₁orresponding lim...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148078 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A Limit Relation for Dunkl-Bessel Functions of Type A and B / M. Rösler, M. Voit // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148078 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1480782019-02-17T01:27:00Z A Limit Relation for Dunkl-Bessel Functions of Type A and B Rösler, M. Voit, M. We prove a limit relation for the Dunkl-Bessel function of type BN with multiplicity parameters k₁ on the roots ±ei and k₂ on ±ei±ej where k₁ tends to infinity and the arguments are suitably scaled. It gives a good approximation in terms of the Dunkl-type Bessel function of type An₋₁orresponding limit relation for Bessel functions on matrix cones. 2008 Article A Limit Relation for Dunkl-Bessel Functions of Type A and B / M. Rösler, M. Voit // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 17 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 33C67; 43A85; 20F55 http://dspace.nbuv.gov.ua/handle/123456789/148078 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We prove a limit relation for the Dunkl-Bessel function of type BN with multiplicity parameters k₁ on the roots ±ei and k₂ on ±ei±ej where k₁ tends to infinity and the arguments are suitably scaled. It gives a good approximation in terms of the Dunkl-type Bessel function of type An₋₁orresponding limit relation for Bessel functions on matrix cones. |
format |
Article |
author |
Rösler, M. Voit, M. |
spellingShingle |
Rösler, M. Voit, M. A Limit Relation for Dunkl-Bessel Functions of Type A and B Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Rösler, M. Voit, M. |
author_sort |
Rösler, M. |
title |
A Limit Relation for Dunkl-Bessel Functions of Type A and B |
title_short |
A Limit Relation for Dunkl-Bessel Functions of Type A and B |
title_full |
A Limit Relation for Dunkl-Bessel Functions of Type A and B |
title_fullStr |
A Limit Relation for Dunkl-Bessel Functions of Type A and B |
title_full_unstemmed |
A Limit Relation for Dunkl-Bessel Functions of Type A and B |
title_sort |
limit relation for dunkl-bessel functions of type a and b |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148078 |
citation_txt |
A Limit Relation for Dunkl-Bessel Functions of Type A and B / M. Rösler, M. Voit // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 17 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT roslerm alimitrelationfordunklbesselfunctionsoftypeaandb AT voitm alimitrelationfordunklbesselfunctionsoftypeaandb AT roslerm limitrelationfordunklbesselfunctionsoftypeaandb AT voitm limitrelationfordunklbesselfunctionsoftypeaandb |
first_indexed |
2023-05-20T17:29:11Z |
last_indexed |
2023-05-20T17:29:11Z |
_version_ |
1796153405718134784 |