Noncommutative Phase Spaces by Coadjoint Orbits Method

We introduce noncommutative phase spaces by minimal couplings (usual one, dual one and their mixing). We then realize some of them as coadjoint orbits of the anisotropic Newton-Hooke groups in two- and three-dimensional spaces. Through these constructions the positions and the momenta of the phase s...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Ngendakumana, A., Nzotungicimpaye, J., Todjihounde, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148081
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Noncommutative Phase Spaces by Coadjoint Orbits Method / A. Ngendakumana, J. Nzotungicimpaye, L. Todjihounde // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148081
record_format dspace
spelling irk-123456789-1480812019-02-17T01:25:44Z Noncommutative Phase Spaces by Coadjoint Orbits Method Ngendakumana, A. Nzotungicimpaye, J. Todjihounde, L. We introduce noncommutative phase spaces by minimal couplings (usual one, dual one and their mixing). We then realize some of them as coadjoint orbits of the anisotropic Newton-Hooke groups in two- and three-dimensional spaces. Through these constructions the positions and the momenta of the phase spaces do not commute due to the presence of a magnetic field and a dual magnetic field. 2011 Article Noncommutative Phase Spaces by Coadjoint Orbits Method / A. Ngendakumana, J. Nzotungicimpaye, L. Todjihounde // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 22E60; 22E70; 37J15; 53D05; 53D17 DOI: http://dx.doi.org/10.3842/SIGMA.2011.116 http://dspace.nbuv.gov.ua/handle/123456789/148081 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We introduce noncommutative phase spaces by minimal couplings (usual one, dual one and their mixing). We then realize some of them as coadjoint orbits of the anisotropic Newton-Hooke groups in two- and three-dimensional spaces. Through these constructions the positions and the momenta of the phase spaces do not commute due to the presence of a magnetic field and a dual magnetic field.
format Article
author Ngendakumana, A.
Nzotungicimpaye, J.
Todjihounde, L.
spellingShingle Ngendakumana, A.
Nzotungicimpaye, J.
Todjihounde, L.
Noncommutative Phase Spaces by Coadjoint Orbits Method
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ngendakumana, A.
Nzotungicimpaye, J.
Todjihounde, L.
author_sort Ngendakumana, A.
title Noncommutative Phase Spaces by Coadjoint Orbits Method
title_short Noncommutative Phase Spaces by Coadjoint Orbits Method
title_full Noncommutative Phase Spaces by Coadjoint Orbits Method
title_fullStr Noncommutative Phase Spaces by Coadjoint Orbits Method
title_full_unstemmed Noncommutative Phase Spaces by Coadjoint Orbits Method
title_sort noncommutative phase spaces by coadjoint orbits method
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/148081
citation_txt Noncommutative Phase Spaces by Coadjoint Orbits Method / A. Ngendakumana, J. Nzotungicimpaye, L. Todjihounde // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ngendakumanaa noncommutativephasespacesbycoadjointorbitsmethod
AT nzotungicimpayej noncommutativephasespacesbycoadjointorbitsmethod
AT todjihoundel noncommutativephasespacesbycoadjointorbitsmethod
first_indexed 2023-05-20T17:29:14Z
last_indexed 2023-05-20T17:29:14Z
_version_ 1796153405928898560